Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2401.09953
Cited By
Through the Dual-Prism: A Spectral Perspective on Graph Data Augmentation for Graph Classification
18 January 2024
Yutong Xia
Runpeng Yu
Yuxuan Liang
Xavier Bresson
Xinchao Wang
Roger Zimmermann
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Through the Dual-Prism: A Spectral Perspective on Graph Data Augmentation for Graph Classification"
35 / 35 papers shown
Title
DropEdge not Foolproof: Effective Augmentation Method for Signed Graph Neural Networks
Zeyu Zhang
Lu Li
Shuyan Wan
Sijie Wang
Zhiyi Wang
Zhiyuan Lu
Dong Hao
Wanli Li
55
2
0
29 Sep 2024
Graph Mixup with Soft Alignments
Hongyi Ling
Zhimeng Jiang
Meng Liu
Shuiwang Ji
Na Zou
AAML
46
21
0
11 Jun 2023
Spatio-Temporal Graph Neural Networks for Predictive Learning in Urban Computing: A Survey
G. Jin
Yuxuan Liang
Yuchen Fang
Zezhi Shao
Jincai Huang
Junbo Zhang
Yu Zheng
AI4TS
AI4CE
97
190
0
25 Mar 2023
Every Node Counts: Improving the Training of Graph Neural Networks on Node Classification
Moshe Eliasof
E. Haber
Eran Treister
GNN
68
0
0
29 Nov 2022
Revisiting Graph Contrastive Learning from the Perspective of Graph Spectrum
Nian Liu
Xiao Wang
Deyu Bo
Chuan Shi
Jian Pei
40
63
0
05 Oct 2022
Spectral Augmentation for Self-Supervised Learning on Graphs
Lu Lin
Jinghui Chen
Hongning Wang
OOD
58
49
0
02 Oct 2022
Model-Agnostic Augmentation for Accurate Graph Classification
Jaemin Yoo
Sooyeon Shim
U. Kang
GNN
63
29
0
21 Feb 2022
Graph Data Augmentation for Graph Machine Learning: A Survey
Tong Zhao
Wei Jin
Yozen Liu
Yingheng Wang
Gang Liu
Stephan Günnemann
Neil Shah
Meng Jiang
OOD
74
80
0
17 Feb 2022
Data Augmentation for Deep Graph Learning: A Survey
Kaize Ding
Zhe Xu
Hanghang Tong
Huan Liu
OOD
GNN
77
223
0
16 Feb 2022
G-Mixup: Graph Data Augmentation for Graph Classification
Xiaotian Han
Zhimeng Jiang
Ninghao Liu
Xia Hu
62
195
0
15 Feb 2022
A New Perspective on the Effects of Spectrum in Graph Neural Networks
Mingqi Yang
Yanming Shen
Rui Li
Heng Qi
Qian Zhang
Baocai Yin
GNN
28
28
0
14 Dec 2021
Graph Transplant: Node Saliency-Guided Graph Mixup with Local Structure Preservation
Joonhyung Park
Hajin Shim
Eunho Yang
93
49
0
10 Nov 2021
Graph Contrastive Learning Automated
Yuning You
Tianlong Chen
Yang Shen
Zhangyang Wang
68
463
0
10 Jun 2021
Adversarial Graph Augmentation to Improve Graph Contrastive Learning
Susheel Suresh
Pan Li
Cong Hao
Jennifer Neville
AAML
57
338
0
10 Jun 2021
Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting
Defu Cao
Yujing Wang
Juanyong Duan
Ce Zhang
Xia Zhu
...
Yunhai Tong
Bixiong Xu
Jing Bai
Jie Tong
Qi Zhang
AI4TS
39
509
0
13 Mar 2021
Beyond Low-frequency Information in Graph Convolutional Networks
Deyu Bo
Xiao Wang
C. Shi
Huawei Shen
GNN
161
573
0
04 Jan 2021
Graph signal processing for machine learning: A review and new perspectives
Xiaowen Dong
D. Thanou
Laura Toni
M. Bronstein
P. Frossard
44
161
0
31 Jul 2020
TUDataset: A collection of benchmark datasets for learning with graphs
Christopher Morris
Nils M. Kriege
Franka Bause
Kristian Kersting
Petra Mutzel
Marion Neumann
189
808
0
16 Jul 2020
Contrastive Multi-View Representation Learning on Graphs
Kaveh Hassani
Amir Hosein Khas Ahmadi
SSL
208
1,292
0
10 Jun 2020
Graph Random Neural Network for Semi-Supervised Learning on Graphs
Wenzheng Feng
Jie Zhang
Yuxiao Dong
Yu Han
Huanbo Luan
Qian Xu
Qiang Yang
Evgeny Kharlamov
Jie Tang
79
391
0
22 May 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
259
2,701
0
02 May 2020
InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization
Fan-Yun Sun
Jordan Hoffmann
Vikas Verma
Jian Tang
SSL
143
852
0
31 Jul 2019
DropEdge: Towards Deep Graph Convolutional Networks on Node Classification
Yu Rong
Wenbing Huang
Tingyang Xu
Junzhou Huang
93
1,323
0
25 Jul 2019
Strategies for Pre-training Graph Neural Networks
Weihua Hu
Bowen Liu
Joseph Gomes
Marinka Zitnik
Percy Liang
Vijay S. Pande
J. Leskovec
SSL
AI4CE
91
1,377
0
29 May 2019
Revisiting Graph Neural Networks: All We Have is Low-Pass Filters
Hoang NT
Takanori Maehara
GNN
83
427
0
23 May 2019
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
199
7,554
0
01 Oct 2018
Deep Graph Infomax
Petar Velickovic
W. Fedus
William L. Hamilton
Pietro Lio
Yoshua Bengio
R. Devon Hjelm
GNN
112
2,368
0
27 Sep 2018
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
258
9,687
0
25 Oct 2017
graph2vec: Learning Distributed Representations of Graphs
A. Narayanan
Mahinthan Chandramohan
R. Venkatesan
Lihui Chen
Yang Liu
Shantanu Jaiswal
GNN
64
734
0
17 Jul 2017
Inductive Representation Learning on Large Graphs
William L. Hamilton
Z. Ying
J. Leskovec
431
15,066
0
07 Jun 2017
Variational Graph Auto-Encoders
Thomas Kipf
Max Welling
GNN
BDL
SSL
CML
121
3,559
0
21 Nov 2016
Automatic chemical design using a data-driven continuous representation of molecules
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
141
2,911
0
07 Oct 2016
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
540
28,901
0
09 Sep 2016
node2vec: Scalable Feature Learning for Networks
Aditya Grover
J. Leskovec
172
10,825
0
03 Jul 2016
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
M. Defferrard
Xavier Bresson
P. Vandergheynst
GNN
293
7,622
0
30 Jun 2016
1