ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.09057
25
3

CrossVideo: Self-supervised Cross-modal Contrastive Learning for Point Cloud Video Understanding

17 January 2024
Yunze Liu
Changxi Chen
Zifan Wang
Li Yi
    3DPC
ArXivPDFHTML
Abstract

This paper introduces a novel approach named CrossVideo, which aims to enhance self-supervised cross-modal contrastive learning in the field of point cloud video understanding. Traditional supervised learning methods encounter limitations due to data scarcity and challenges in label acquisition. To address these issues, we propose a self-supervised learning method that leverages the cross-modal relationship between point cloud videos and image videos to acquire meaningful feature representations. Intra-modal and cross-modal contrastive learning techniques are employed to facilitate effective comprehension of point cloud video. We also propose a multi-level contrastive approach for both modalities. Through extensive experiments, we demonstrate that our method significantly surpasses previous state-of-the-art approaches, and we conduct comprehensive ablation studies to validate the effectiveness of our proposed designs.

View on arXiv
Comments on this paper