ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.08984
  4. Cited By
A GAN-based data poisoning framework against anomaly detection in
  vertical federated learning

A GAN-based data poisoning framework against anomaly detection in vertical federated learning

17 January 2024
Xiaolin Chen
Daoguang Zan
Wei Li
Bei Guan
Yongji Wang
    FedML
    AAML
ArXivPDFHTML

Papers citing "A GAN-based data poisoning framework against anomaly detection in vertical federated learning"

7 / 7 papers shown
Title
Batch Label Inference and Replacement Attacks in Black-Boxed Vertical
  Federated Learning
Batch Label Inference and Replacement Attacks in Black-Boxed Vertical Federated Learning
Yang Liu
Tianyuan Zou
Yan Kang
Wenhan Liu
Yuanqin He
Zhi-qian Yi
Qian Yang
FedML
AAML
82
19
0
10 Dec 2021
FixMatch: Simplifying Semi-Supervised Learning with Consistency and
  Confidence
FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence
Kihyuk Sohn
David Berthelot
Chun-Liang Li
Zizhao Zhang
Nicholas Carlini
E. D. Cubuk
Alexey Kurakin
Han Zhang
Colin Raffel
AAML
153
3,539
0
21 Jan 2020
Advances and Open Problems in Federated Learning
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
208
6,229
0
10 Dec 2019
Federated Learning for Wireless Communications: Motivation,
  Opportunities and Challenges
Federated Learning for Wireless Communications: Motivation, Opportunities and Challenges
Solmaz Niknam
Harpreet S. Dhillon
J. H. Reed
58
601
0
30 Jul 2019
Delving into Transferable Adversarial Examples and Black-box Attacks
Delving into Transferable Adversarial Examples and Black-box Attacks
Yanpei Liu
Xinyun Chen
Chang-rui Liu
D. Song
AAML
133
1,731
0
08 Nov 2016
Federated Learning: Strategies for Improving Communication Efficiency
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
291
4,636
0
18 Oct 2016
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
380
17,437
0
17 Feb 2016
1