ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.08414
  4. Cited By
Enhancing Dynamical System Modeling through Interpretable Machine
  Learning Augmentations: A Case Study in Cathodic Electrophoretic Deposition

Enhancing Dynamical System Modeling through Interpretable Machine Learning Augmentations: A Case Study in Cathodic Electrophoretic Deposition

16 January 2024
Christian L. Jacobsen
Jiayuan Dong
Mehdi Khalloufi
Xun Huan
Karthik Duraisamy
Maryam Akram
Wanjiao Liu
ArXivPDFHTML

Papers citing "Enhancing Dynamical System Modeling through Interpretable Machine Learning Augmentations: A Case Study in Cathodic Electrophoretic Deposition"

1 / 1 papers shown
Title
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Jiayuan Dong
Christian L. Jacobsen
Mehdi Khalloufi
Maryam Akram
Wanjiao Liu
Karthik Duraisamy
Xun Huan
BDL
54
5
0
08 Apr 2024
1