ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.07541
16
0

DynaHull: Density-centric Dynamic Point Filtering in Point Clouds

15 January 2024
Pejman Habibiroudkenar
Risto Ojala
Kari Tammi
    3DPC
ArXivPDFHTML
Abstract

In the field of indoor robotics, accurately localizing and mapping in dynamic environments using point clouds can be a challenging task due to the presence of dynamic points. These dynamic points are often represented by people in indoor environments, but in industrial settings with moving machinery, there can be various types of dynamic points. This study introduces DynaHull, a novel technique designed to enhance indoor mapping accuracy by effectively removing dynamic points from point clouds. DynaHull works by leveraging the observation that, over multiple scans, stationary points have a higher density compared to dynamic ones. Furthermore, DynaHull addresses mapping challenges related to unevenly distributed points by clustering the map into smaller sections. In each section, the density factor of each point is determined by dividing the number of neighbors by the volume these neighboring points occupy using a convex hull method. The algorithm removes the dynamic points using an adaptive threshold based on the point count of each cluster, thus reducing the false positives. The performance of DynaHull was compared to state-of-the-art techniques, such as ERASOR, Removert, OctoMap plus SOR, and Dynablox, by comparing each method to the ground truth map created during a low activity period in which only a few dynamic points were present. The results indicated that DynaHull outperformed these techniques in various metrics, noticeably in the Earth Mover's Distance, false negatives, and false positives.

View on arXiv
Comments on this paper