ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.06481
  4. Cited By
Machine learning a fixed point action for SU(3) gauge theory with a
  gauge equivariant convolutional neural network

Machine learning a fixed point action for SU(3) gauge theory with a gauge equivariant convolutional neural network

12 January 2024
Kieran Holland
A. Ipp
David I. Müller
Urs Wenger
    AI4CE
ArXivPDFHTML

Papers citing "Machine learning a fixed point action for SU(3) gauge theory with a gauge equivariant convolutional neural network"

7 / 7 papers shown
Title
Fixed point actions from convolutional neural networks
Fixed point actions from convolutional neural networks
Kieran Holland
A. Ipp
David I. Müller
Urs Wenger
39
5
0
29 Nov 2023
Gauge-equivariant pooling layers for preconditioners in lattice QCD
Gauge-equivariant pooling layers for preconditioners in lattice QCD
C. Lehner
T. Wettig
AI4CE
40
8
0
20 Apr 2023
Gauge-equivariant neural networks as preconditioners in lattice QCD
Gauge-equivariant neural networks as preconditioners in lattice QCD
C. Lehner
T. Wettig
AI4CE
48
10
0
10 Feb 2023
Snowmass 2021 Computational Frontier CompF03 Topical Group Report:
  Machine Learning
Snowmass 2021 Computational Frontier CompF03 Topical Group Report: Machine Learning
P. Shanahan
K. Terao
D. Whiteson
AI4CE
23
29
0
15 Sep 2022
Equivariant flow-based sampling for lattice gauge theory
Equivariant flow-based sampling for lattice gauge theory
G. Kanwar
M. S. Albergo
D. Boyda
Kyle Cranmer
D. Hackett
S. Racanière
Danilo Jimenez Rezende
P. Shanahan
AI4CE
45
175
0
13 Mar 2020
Flow-based generative models for Markov chain Monte Carlo in lattice
  field theory
Flow-based generative models for Markov chain Monte Carlo in lattice field theory
M. S. Albergo
G. Kanwar
P. Shanahan
AI4CE
46
218
0
26 Apr 2019
A high-bias, low-variance introduction to Machine Learning for
  physicists
A high-bias, low-variance introduction to Machine Learning for physicists
Pankaj Mehta
Marin Bukov
Ching-Hao Wang
A. G. Day
C. Richardson
Charles K. Fisher
D. Schwab
AI4CE
79
873
0
23 Mar 2018
1