ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.04472
  4. Cited By
A Survey on Efficient Federated Learning Methods for Foundation Model
  Training

A Survey on Efficient Federated Learning Methods for Foundation Model Training

9 January 2024
Herbert Woisetschläger
Alexander Isenko
Shiqiang Wang
R. Mayer
Hans-Arno Jacobsen
    FedML
ArXivPDFHTML

Papers citing "A Survey on Efficient Federated Learning Methods for Foundation Model Training"

9 / 9 papers shown
Title
Vision Foundation Models in Medical Image Analysis: Advances and Challenges
Vision Foundation Models in Medical Image Analysis: Advances and Challenges
Pengchen Liang
Bin Pu
Haishan Huang
Yiwei Li
H. Wang
Weibo Ma
Qing Chang
VLM
MedIm
106
0
0
24 Feb 2025
Ten Challenging Problems in Federated Foundation Models
Ten Challenging Problems in Federated Foundation Models
Tao Fan
Hanlin Gu
Xuemei Cao
Chee Seng Chan
Qian Chen
...
Y. Zhang
Xiaojin Zhang
Zhenzhe Zheng
Lixin Fan
Qiang Yang
FedML
83
4
0
14 Feb 2025
Sparse Random Networks for Communication-Efficient Federated Learning
Sparse Random Networks for Communication-Efficient Federated Learning
Berivan Isik
Francesco Pase
Deniz Gunduz
Tsachy Weissman
M. Zorzi
FedML
70
52
0
30 Sep 2022
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
280
3,848
0
18 Apr 2021
FjORD: Fair and Accurate Federated Learning under heterogeneous targets
  with Ordered Dropout
FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout
Samuel Horváth
Stefanos Laskaridis
Mario Almeida
Ilias Leondiadis
Stylianos I. Venieris
Nicholas D. Lane
181
267
0
26 Feb 2021
Linear Convergence in Federated Learning: Tackling Client Heterogeneity
  and Sparse Gradients
Linear Convergence in Federated Learning: Tackling Client Heterogeneity and Sparse Gradients
A. Mitra
Rayana H. Jaafar
George J. Pappas
Hamed Hassani
FedML
55
157
0
14 Feb 2021
FedML: A Research Library and Benchmark for Federated Machine Learning
FedML: A Research Library and Benchmark for Federated Machine Learning
Chaoyang He
Songze Li
Jinhyun So
Xiao Zeng
Mi Zhang
...
Yang Liu
Ramesh Raskar
Qiang Yang
M. Annavaram
Salman Avestimehr
FedML
168
564
0
27 Jul 2020
IBM Federated Learning: an Enterprise Framework White Paper V0.1
IBM Federated Learning: an Enterprise Framework White Paper V0.1
Heiko Ludwig
Nathalie Baracaldo
Gegi Thomas
Yi Zhou
Ali Anwar
...
Sean Laguna
Mikhail Yurochkin
Mayank Agarwal
Ebube Chuba
Annie Abay
FedML
131
157
0
22 Jul 2020
FedPAQ: A Communication-Efficient Federated Learning Method with
  Periodic Averaging and Quantization
FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and Quantization
Amirhossein Reisizadeh
Aryan Mokhtari
Hamed Hassani
Ali Jadbabaie
Ramtin Pedarsani
FedML
174
760
0
28 Sep 2019
1