Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2401.04374
Cited By
v1
v2 (latest)
Towards Explainable Artificial Intelligence (XAI): A Data Mining Perspective
9 January 2024
Haoyi Xiong
Xuhong Li
Xiaofei Zhang
Jiamin Chen
Xinhao Sun
Yuchen Li
Zeyi Sun
Jundong Li
XAI
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Towards Explainable Artificial Intelligence (XAI): A Data Mining Perspective"
30 / 80 papers shown
Title
A Survey on Explainable Artificial Intelligence (XAI): Towards Medical XAI
Erico Tjoa
Cuntai Guan
XAI
122
1,452
0
17 Jul 2019
A study on the Interpretability of Neural Retrieval Models using DeepSHAP
Zeon Trevor Fernando
Jaspreet Singh
Avishek Anand
FAtt
AAML
54
68
0
15 Jul 2019
The What-If Tool: Interactive Probing of Machine Learning Models
James Wexler
Mahima Pushkarna
Tolga Bolukbasi
Martin Wattenberg
F. Viégas
Jimbo Wilson
VLM
81
495
0
09 Jul 2019
Does Learning Require Memorization? A Short Tale about a Long Tail
Vitaly Feldman
TDI
142
502
0
12 Jun 2019
Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned
Elena Voita
David Talbot
F. Moiseev
Rico Sennrich
Ivan Titov
119
1,148
0
23 May 2019
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
95
1,845
0
06 May 2019
Heavy-Tailed Universality Predicts Trends in Test Accuracies for Very Large Pre-Trained Deep Neural Networks
Charles H. Martin
Michael W. Mahoney
73
56
0
24 Jan 2019
ULDor: A Universal Lesion Detector for CT Scans with Pseudo Masks and Hard Negative Example Mining
Youbao Tang
Ke Yan
Yuxing Tang
Jiamin Liu
Jing Xiao
Ronald M. Summers
MedIm
111
61
0
18 Jan 2019
An Empirical Study of Example Forgetting during Deep Neural Network Learning
Mariya Toneva
Alessandro Sordoni
Rémi Tachet des Combes
Adam Trischler
Yoshua Bengio
Geoffrey J. Gordon
134
741
0
12 Dec 2018
Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning
Charles H. Martin
Michael W. Mahoney
AI4CE
123
201
0
02 Oct 2018
This Looks Like That: Deep Learning for Interpretable Image Recognition
Chaofan Chen
Oscar Li
Chaofan Tao
A. Barnett
Jonathan Su
Cynthia Rudin
255
1,187
0
27 Jun 2018
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
384
685
0
17 Feb 2018
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
150
3,979
0
06 Feb 2018
Interpreting CNNs via Decision Trees
Quanshi Zhang
Yu Yang
Ying Nian Wu
Song-Chun Zhu
FAtt
73
323
0
01 Feb 2018
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
248
1,849
0
30 Nov 2017
Distilling a Neural Network Into a Soft Decision Tree
Nicholas Frosst
Geoffrey E. Hinton
430
639
0
27 Nov 2017
Interpreting Deep Visual Representations via Network Dissection
Bolei Zhou
David Bau
A. Oliva
Antonio Torralba
FAtt
MILM
63
325
0
15 Nov 2017
Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks
Aditya Chattopadhyay
Anirban Sarkar
Prantik Howlader
V. Balasubramanian
FAtt
119
2,311
0
30 Oct 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
22,090
0
22 May 2017
Network Dissection: Quantifying Interpretability of Deep Visual Representations
David Bau
Bolei Zhou
A. Khosla
A. Oliva
Antonio Torralba
MILM
FAtt
158
1,526
1
19 Apr 2017
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
203
3,884
0
10 Apr 2017
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
219
2,910
0
14 Mar 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
335
20,110
0
07 Oct 2016
Training Region-based Object Detectors with Online Hard Example Mining
Abhinav Shrivastava
Abhinav Gupta
Ross B. Girshick
ObjD
157
2,422
0
12 Apr 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
17,071
0
16 Feb 2016
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSL
SSeg
FAtt
253
9,342
0
14 Dec 2015
Understanding Deep Image Representations by Inverting Them
Aravindh Mahendran
Andrea Vedaldi
FAtt
131
1,968
0
26 Nov 2014
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
317
7,321
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
603
15,907
0
12 Nov 2013
Identifying Mislabeled Training Data
C. Brodley
M. Friedl
111
972
0
01 Jun 2011
Previous
1
2