39
1

Uncertainty Propagation and Bayesian Fusion on Unimodular Lie Groups from a Parametric Perspective

Abstract

We address the problem of uncertainty propagation and Bayesian fusion on unimodular Lie groups. Starting from a stochastic differential equation (SDE) defined on Lie groups via Mckean-Gangolli injection, we first convert it to a parametric SDE in exponential coordinates. The coefficient transform method for the conversion is stated for both Ito's and Stratonovich's interpretation of the SDE. Then we derive a mean and covariance fitting formula for probability distributions on Lie groups defined by a concentrated distribution on the exponential coordinate. It is used to derive the mean and covariance propagation equations for the SDE defined by injection, which coincides with the result derived from a Fokker-Planck equation in previous work. We also propose a simple modification to the update step of Kalman filters using the fitting formula, which improves the fusion accuracy with moderate computation time.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.