Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2401.02398
Cited By
Generating synthetic data for neural operators
4 January 2024
Erisa Hasani
Rachel A. Ward
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Generating synthetic data for neural operators"
31 / 31 papers shown
Title
Reinforcement Learning Closures for Underresolved Partial Differential Equations using Synthetic Data
Lothar Heimbach
Sebastian Kaltenbach
Petr Karnakov
Francis J. Alexander
Petros Koumoutsakos
AI4CE
113
0
0
16 May 2025
Data-Efficient Inference of Neural Fluid Fields via SciML Foundation Model
Yuqiu Liu
Jingxuan Xu
Mauricio Soroco
Yunchao Wei
Wuyang Chen
AI4CE
122
2
0
18 Dec 2024
Neural Green's Operators for Parametric Partial Differential Equations
Hugo Melchers
Joost Prins
Michael Abdelmalik
150
4
0
04 Jun 2024
MODNO: Multi Operator Learning With Distributed Neural Operators
Zecheng Zhang
94
8
0
03 Apr 2024
Neural Parameter Regression for Explicit Representations of PDE Solution Operators
Konrad Mundinger
Max Zimmer
Sebastian Pokutta
85
1
0
19 Mar 2024
Neural Operators with Localized Integral and Differential Kernels
Miguel Liu-Schiaffini
Julius Berner
Boris Bonev
Thorsten Kurth
Kamyar Azizzadenesheli
A. Anandkumar
86
23
0
26 Feb 2024
Data-Efficient Operator Learning via Unsupervised Pretraining and In-Context Learning
Wuyang Chen
Jialin Song
Pu Ren
Shashank Subramanian
Dmitriy Morozov
Michael W. Mahoney
AI4CE
90
12
0
24 Feb 2024
Towards Foundation Models for Scientific Machine Learning: Characterizing Scaling and Transfer Behavior
Shashank Subramanian
P. Harrington
Kurt Keutzer
W. Bhimji
Dmitriy Morozov
Michael W. Mahoney
A. Gholami
AI4CE
87
77
0
01 Jun 2023
A graph convolutional autoencoder approach to model order reduction for parametrized PDEs
F. Pichi
B. Moya
J. Hesthaven
AI4CE
60
56
0
15 May 2023
LNO: Laplace Neural Operator for Solving Differential Equations
Qianying Cao
S. Goswami
George Karniadakis
68
48
0
19 Mar 2023
Convolutional Neural Operators for robust and accurate learning of PDEs
Bogdan Raonić
Roberto Molinaro
Tim De Ryck
Tobias Rohner
Francesca Bartolucci
Rima Alaifari
Siddhartha Mishra
Emmanuel de Bezenac
AAML
104
94
0
02 Feb 2023
Neural Inverse Operators for Solving PDE Inverse Problems
Roberto Molinaro
Yunan Yang
Bjorn Engquist
Siddhartha Mishra
AI4CE
56
40
0
26 Jan 2023
Random Grid Neural Processes for Parametric Partial Differential Equations
Arnaud Vadeboncoeur
Ieva Kazlauskaite
Y. Papandreou
F. Cirak
Mark Girolami
Ömer Deniz Akyildiz
AI4CE
63
11
0
26 Jan 2023
Non-equispaced Fourier Neural Solvers for PDEs
Haitao Lin
Lirong Wu
Yongjie Xu
Yufei Huang
Siyuan Li
Guojiang Zhao
Z. Stan
52
8
0
09 Dec 2022
Fourier Neural Operator with Learned Deformations for PDEs on General Geometries
Zong-Yi Li
Daniel Zhengyu Huang
Burigede Liu
Anima Anandkumar
AI4CE
169
268
0
11 Jul 2022
NOMAD: Nonlinear Manifold Decoders for Operator Learning
Jacob H. Seidman
Georgios Kissas
P. Perdikaris
George J. Pappas
AI4CE
72
75
0
07 Jun 2022
GCN-FFNN: A Two-Stream Deep Model for Learning Solution to Partial Differential Equations
Onur Bilgin
Thomas Vergutz
S. Mehrkanoon
GNN
47
3
0
28 Apr 2022
U-NO: U-shaped Neural Operators
Md Ashiqur Rahman
Zachary E. Ross
Kamyar Azizzadenesheli
AI4CE
107
144
0
23 Apr 2022
Enhanced DeepONet for Modeling Partial Differential Operators Considering Multiple Input Functions
Lesley Tan
Liang Chen
39
13
0
17 Feb 2022
Factorized Fourier Neural Operators
Alasdair Tran
A. Mathews
Lexing Xie
Cheng Soon Ong
AI4CE
71
155
0
27 Nov 2021
A Metalearning Approach for Physics-Informed Neural Networks (PINNs): Application to Parameterized PDEs
Michael Penwarden
Shandian Zhe
A. Narayan
Robert M. Kirby
PINN
AI4CE
79
42
0
26 Oct 2021
Neural Operator: Learning Maps Between Function Spaces
Nikola B. Kovachki
Zong-Yi Li
Burigede Liu
Kamyar Azizzadenesheli
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
117
449
0
19 Aug 2021
MOD-Net: A Machine Learning Approach via Model-Operator-Data Network for Solving PDEs
Lulu Zhang
Yaoyu Zhang
Yaoyu Zhang
Weinan E
Z. Xu
Zheng Ma
AI4CE
50
33
0
08 Jul 2021
Learning the solution operator of parametric partial differential equations with physics-informed DeepOnets
Sizhuang He
Hanwen Wang
P. Perdikaris
AI4CE
97
699
0
19 Mar 2021
Bayesian neural networks for weak solution of PDEs with uncertainty quantification
Xiaoxuan Zhang
K. Garikipati
AI4CE
67
12
0
13 Jan 2021
Multipole Graph Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
211
392
0
16 Jun 2020
Model Reduction and Neural Networks for Parametric PDEs
K. Bhattacharya
Bamdad Hosseini
Nikola B. Kovachki
Andrew M. Stuart
212
332
0
07 May 2020
Neural Operator: Graph Kernel Network for Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
196
736
0
07 Mar 2020
PDE-Net: Learning PDEs from Data
Zichao Long
Yiping Lu
Xianzhong Ma
Bin Dong
DiffM
AI4CE
43
756
0
26 Oct 2017
The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
E. Weinan
Ting Yu
121
1,387
0
30 Sep 2017
DGM: A deep learning algorithm for solving partial differential equations
Justin A. Sirignano
K. Spiliopoulos
AI4CE
91
2,063
0
24 Aug 2017
1