ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.01093
  4. Cited By
Exploring Hyperspectral Anomaly Detection with Human Vision: A Small
  Target Aware Detector

Exploring Hyperspectral Anomaly Detection with Human Vision: A Small Target Aware Detector

2 January 2024
Jitao Ma
Weiying Xie
Yunsong Li
ArXivPDFHTML

Papers citing "Exploring Hyperspectral Anomaly Detection with Human Vision: A Small Target Aware Detector"

17 / 17 papers shown
Title
FedFusion: Manifold Driven Federated Learning for Multi-satellite and
  Multi-modality Fusion
FedFusion: Manifold Driven Federated Learning for Multi-satellite and Multi-modality Fusion
Daixun Li
Weiying Xie
Yunsong Li
Leyuan Fang
53
19
0
16 Nov 2023
You Only Train Once: Learning a General Anomaly Enhancement Network with
  Random Masks for Hyperspectral Anomaly Detection
You Only Train Once: Learning a General Anomaly Enhancement Network with Random Masks for Hyperspectral Anomaly Detection
Zhaoxu Li
Yingqian Wang
Chao Xiao
Qi Ling
Zaiping Lin
Wei An
39
35
0
31 Mar 2023
Supervised Masked Knowledge Distillation for Few-Shot Transformers
Supervised Masked Knowledge Distillation for Few-Shot Transformers
Hanxi Lin
G. Han
Jiawei Ma
Shiyuan Huang
Xudong Lin
Shih-Fu Chang
72
35
0
25 Mar 2023
SS-CAM: Smoothed Score-CAM for Sharper Visual Feature Localization
SS-CAM: Smoothed Score-CAM for Sharper Visual Feature Localization
Haofan Wang
Rakshit Naidu
J. Michael
Soumya Snigdha Kundu
FAtt
96
79
0
25 Jun 2020
Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural
  Networks
Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks
Mehdi Neshat
Zifan Wang
Bradley Alexander
Fan Yang
Zijian Zhang
Sirui Ding
Markus Wagner
Xia Hu
FAtt
86
1,062
0
03 Oct 2019
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
Richard Y. Zhang
Phillip Isola
Alexei A. Efros
Eli Shechtman
Oliver Wang
EGVM
327
11,734
0
11 Jan 2018
How Generative Adversarial Networks and Their Variants Work: An Overview
How Generative Adversarial Networks and Their Variants Work: An Overview
Yongjun Hong
Uiwon Hwang
Jaeyoon Yoo
Sungroh Yoon
GAN
63
156
0
16 Nov 2017
Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks
Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks
Aditya Chattopadhyay
Anirban Sarkar
Prantik Howlader
V. Balasubramanian
FAtt
101
2,285
0
30 Oct 2017
Paying More Attention to Attention: Improving the Performance of
  Convolutional Neural Networks via Attention Transfer
Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer
Sergey Zagoruyko
N. Komodakis
113
2,569
0
12 Dec 2016
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
246
19,929
0
07 Oct 2016
Learning Deep Features for Discriminative Localization
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSL
SSeg
FAtt
221
9,298
0
14 Dec 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
300
19,580
0
09 Mar 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.3K
149,842
0
22 Dec 2014
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
214
4,665
0
21 Dec 2014
FitNets: Hints for Thin Deep Nets
FitNets: Hints for Thin Deep Nets
Adriana Romero
Nicolas Ballas
Samira Ebrahimi Kahou
Antoine Chassang
C. Gatta
Yoshua Bengio
FedML
264
3,870
0
19 Dec 2014
Do Deep Nets Really Need to be Deep?
Do Deep Nets Really Need to be Deep?
Lei Jimmy Ba
R. Caruana
158
2,117
0
21 Dec 2013
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
244
7,279
0
20 Dec 2013
1