ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.17411
  4. Cited By
Generative Posterior Networks for Approximately Bayesian Epistemic
  Uncertainty Estimation

Generative Posterior Networks for Approximately Bayesian Epistemic Uncertainty Estimation

29 December 2023
Melrose Roderick
Felix Berkenkamp
Fatemeh Sheikholeslami
Zico Kolter
    UQCV
ArXiv (abs)PDFHTML

Papers citing "Generative Posterior Networks for Approximately Bayesian Epistemic Uncertainty Estimation"

13 / 13 papers shown
Title
Bayesian Deep Ensembles via the Neural Tangent Kernel
Bayesian Deep Ensembles via the Neural Tangent Kernel
Bobby He
Balaji Lakshminarayanan
Yee Whye Teh
BDLUQCV
59
121
0
11 Jul 2020
Simple and Principled Uncertainty Estimation with Deterministic Deep
  Learning via Distance Awareness
Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness
Jeremiah Zhe Liu
Zi Lin
Shreyas Padhy
Dustin Tran
Tania Bedrax-Weiss
Balaji Lakshminarayanan
UQCVBDL
252
451
0
17 Jun 2020
Efficient Model-Based Reinforcement Learning through Optimistic Policy
  Search and Planning
Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning
Sebastian Curi
Felix Berkenkamp
Andreas Krause
101
85
0
15 Jun 2020
A Simple Framework for Contrastive Learning of Visual Representations
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
393
18,897
0
13 Feb 2020
Uncertainty in Neural Networks: Approximately Bayesian Ensembling
Uncertainty in Neural Networks: Approximately Bayesian Ensembling
Tim Pearce
Felix Leibfried
Alexandra Brintrup
Mohamed H. Zaki
A. Neely
BDLUQCV
77
198
0
12 Oct 2018
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU
  Acceleration
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
GP
136
1,104
0
28 Sep 2018
On Calibration of Modern Neural Networks
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
299
5,877
0
14 Jun 2017
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
307
4,817
0
04 Jan 2016
Deep Kernel Learning
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
256
888
0
06 Nov 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCVBDL
891
9,364
0
06 Jun 2015
Kernel Interpolation for Scalable Structured Gaussian Processes
  (KISS-GP)
Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)
A. Wilson
H. Nickisch
GP
86
515
0
03 Mar 2015
Gaussian Processes for Big Data
Gaussian Processes for Big Data
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
113
1,237
0
26 Sep 2013
Practical Bayesian Optimization of Machine Learning Algorithms
Practical Bayesian Optimization of Machine Learning Algorithms
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
382
7,981
0
13 Jun 2012
1