Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2312.17199
Cited By
Tractable Function-Space Variational Inference in Bayesian Neural Networks
28 December 2023
Tim G. J. Rudner
Zonghao Chen
Yee Whye Teh
Y. Gal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Tractable Function-Space Variational Inference in Bayesian Neural Networks"
31 / 31 papers shown
Title
Position: Epistemic Artificial Intelligence is Essential for Machine Learning Models to Know When They Do Not Know
Shireen Kudukkil Manchingal
Fabio Cuzzolin
56
0
0
08 May 2025
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
L. J. L. Lopez
Shaza Elsharief
Dhiyaa Al Jorf
Firas Darwish
Congbo Ma
Farah E. Shamout
113
0
0
04 May 2025
Contextual Similarity Distillation: Ensemble Uncertainties with a Single Model
Moritz A. Zanger
Pascal R. van der Vaart
Wendelin Bohmer
M. Spaan
UQCV
BDL
155
0
0
14 Mar 2025
CreINNs: Credal-Set Interval Neural Networks for Uncertainty Estimation in Classification Tasks
Kaizheng Wang
Keivan K1 Shariatmadar
Shireen Kudukkil Manchingal
Fabio Cuzzolin
David Moens
Hans Hallez
UQCV
BDL
92
12
0
28 Jan 2025
Functional Stochastic Gradient MCMC for Bayesian Neural Networks
Mengjing Wu
Junyu Xuan
Jie Lu
BDL
18
0
0
25 Sep 2024
Low-Budget Simulation-Based Inference with Bayesian Neural Networks
Arnaud Delaunoy
Maxence de la Brassinne Bonardeaux
S. Mishra-Sharma
Gilles Louppe
46
2
0
27 Aug 2024
Variational Inference Failures Under Model Symmetries: Permutation Invariant Posteriors for Bayesian Neural Networks
Yoav Gelberg
Tycho F. A. van der Ouderaa
Mark van der Wilk
Y. Gal
AAML
40
4
0
10 Aug 2024
Sequential Gaussian Variational Inference for Nonlinear State Estimation applied to Robotic Applications
Min-Won Seo
Solmaz S. Kia
48
0
0
07 Jul 2024
Generative vs. Discriminative modeling under the lens of uncertainty quantification
Elouan Argouarc'h
François Desbouvries
Eric Barat
Eiji Kawasaki
UQCV
46
0
0
13 Jun 2024
One-Shot Federated Learning with Bayesian Pseudocoresets
Tim d'Hondt
Mykola Pechenizkiy
Robert Peharz
FedML
37
0
0
04 Jun 2024
Credal Wrapper of Model Averaging for Uncertainty Estimation in Classification
Kaizheng Wang
Fabio Cuzzolin
Keivan K1 Shariatmadar
David Moens
Hans Hallez
UQCV
BDL
85
6
0
23 May 2024
Attacking Bayes: On the Adversarial Robustness of Bayesian Neural Networks
Yunzhen Feng
Tim G. J. Rudner
Nikolaos Tsilivis
Julia Kempe
AAML
BDL
43
1
0
27 Apr 2024
Posterior Uncertainty Quantification in Neural Networks using Data Augmentation
Luhuan Wu
Sinead Williamson
UQCV
43
6
0
18 Mar 2024
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
Theodore Papamarkou
Maria Skoularidou
Konstantina Palla
Laurence Aitchison
Julyan Arbel
...
David Rügamer
Yee Whye Teh
Max Welling
Andrew Gordon Wilson
Ruqi Zhang
UQCV
BDL
40
27
0
01 Feb 2024
Function-Space Regularization in Neural Networks: A Probabilistic Perspective
Tim G. J. Rudner
Sanyam Kapoor
Shikai Qiu
A. Wilson
37
12
0
28 Dec 2023
Should We Learn Most Likely Functions or Parameters?
Shikai Qiu
Tim G. J. Rudner
Sanyam Kapoor
Andrew Gordon Wilson
13
5
0
27 Nov 2023
Informative Priors Improve the Reliability of Multimodal Clinical Data Classification
L. J. L. Lopez
Tim G. J. Rudner
Karan Singhal
45
3
0
17 Nov 2023
Function Space Bayesian Pseudocoreset for Bayesian Neural Networks
Balhae Kim
Hyungi Lee
Juho Lee
BDL
29
2
0
27 Oct 2023
On permutation symmetries in Bayesian neural network posteriors: a variational perspective
Simone Rossi
Ankit Singh
T. Hannagan
32
2
0
16 Oct 2023
EnSolver: Uncertainty-Aware Ensemble CAPTCHA Solvers with Theoretical Guarantees
D. C. Hoang
Behzad Ousat
Amin Kharraz
Cuong V Nguyen
AAML
26
1
0
27 Jul 2023
Drug Discovery under Covariate Shift with Domain-Informed Prior Distributions over Functions
Leo Klarner
Tim G. J. Rudner
M. Reutlinger
Torsten Schindler
Garrett M. Morris
Charlotte M. Deane
Yee Whye Teh
OOD
BDL
15
9
0
14 Jul 2023
Beyond Deep Ensembles: A Large-Scale Evaluation of Bayesian Deep Learning under Distribution Shift
Florian Seligmann
P. Becker
Michael Volpp
Gerhard Neumann
UQCV
21
14
0
21 Jun 2023
Guided Deep Kernel Learning
Idan Achituve
Gal Chechik
Ethan Fetaya
BDL
31
5
0
19 Feb 2023
Random Grid Neural Processes for Parametric Partial Differential Equations
Arnaud Vadeboncoeur
Ieva Kazlauskaite
Y. Papandreou
F. Cirak
Mark Girolami
Ömer Deniz Akyildiz
AI4CE
28
11
0
26 Jan 2023
Plex: Towards Reliability using Pretrained Large Model Extensions
Dustin Tran
J. Liu
Michael W. Dusenberry
Du Phan
Mark Collier
...
D. Sculley
Y. Gal
Zoubin Ghahramani
Jasper Snoek
Balaji Lakshminarayanan
VLM
39
124
0
15 Jul 2022
Robustness to corruption in pre-trained Bayesian neural networks
Xi Wang
Laurence Aitchison
OOD
UQCV
14
4
0
24 Jun 2022
CARD: Classification and Regression Diffusion Models
Xizewen Han
Huangjie Zheng
Mingyuan Zhou
DiffM
49
109
0
15 Jun 2022
Split personalities in Bayesian Neural Networks: the case for full marginalisation
David Yallup
Will Handley
Michael P. Hobson
A. Lasenby
Pablo Lemos
25
1
0
23 May 2022
Unsolved Problems in ML Safety
Dan Hendrycks
Nicholas Carlini
John Schulman
Jacob Steinhardt
186
273
0
28 Sep 2021
Scalable Uncertainty for Computer Vision with Functional Variational Inference
Eduardo D C Carvalho
R. Clark
Andrea Nicastro
Paul H. J. Kelly
BDL
UQCV
134
22
0
06 Mar 2020
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1