ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.15375
  4. Cited By
An Empirical Study of Efficiency and Privacy of Federated Learning
  Algorithms

An Empirical Study of Efficiency and Privacy of Federated Learning Algorithms

24 December 2023
Sofia Zahri
Hajar Bennouri
A. Abdelmoniem
    FedML
ArXivPDFHTML

Papers citing "An Empirical Study of Efficiency and Privacy of Federated Learning Algorithms"

1 / 1 papers shown
Title
Opacus: User-Friendly Differential Privacy Library in PyTorch
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
165
350
0
25 Sep 2021
1