ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.14294
  4. Cited By
Deep Gaussian Process Priors for Bayesian Inference in Nonlinear Inverse
  Problems

Deep Gaussian Process Priors for Bayesian Inference in Nonlinear Inverse Problems

21 December 2023
Kweku Abraham
Neil Deo
ArXivPDFHTML

Papers citing "Deep Gaussian Process Priors for Bayesian Inference in Nonlinear Inverse Problems"

11 / 11 papers shown
Title
Deep Horseshoe Gaussian Processes
Deep Horseshoe Gaussian Processes
Ismael Castillo
Thibault Randrianarisoa
BDL
UQCV
80
5
0
04 Mar 2024
On the inability of Gaussian process regression to optimally learn
  compositional functions
On the inability of Gaussian process regression to optimally learn compositional functions
M. Giordano
Kolyan Ray
Johannes Schmidt-Hieber
89
13
0
16 May 2022
Deep Gaussian Processes for Biogeophysical Parameter Retrieval and Model
  Inversion
Deep Gaussian Processes for Biogeophysical Parameter Retrieval and Model Inversion
D. Svendsen
Pablo Morales-Álvarez
A. Ruescas
Rafael Molina
Gustau Camps-Valls
118
30
0
16 Apr 2021
Statistical guarantees for Bayesian uncertainty quantification in
  non-linear inverse problems with Gaussian process priors
Statistical guarantees for Bayesian uncertainty quantification in non-linear inverse problems with Gaussian process priors
F. Monard
Richard Nickl
G. Paternain
39
35
0
31 Jul 2020
Consistency of Bayesian inference with Gaussian process priors in an
  elliptic inverse problem
Consistency of Bayesian inference with Gaussian process priors in an elliptic inverse problem
M. Giordano
Richard Nickl
60
59
0
16 Oct 2019
Consistent Inversion of Noisy Non-Abelian X-Ray Transforms
Consistent Inversion of Noisy Non-Abelian X-Ray Transforms
F. Monard
Richard Nickl
G. Paternain
32
58
0
02 May 2019
Convergence rates for Penalised Least Squares Estimators in
  PDE-constrained regression problems
Convergence rates for Penalised Least Squares Estimators in PDE-constrained regression problems
Richard Nickl
Sara van de Geer
Sven Wang
34
60
0
24 Sep 2018
Nonparametric regression using deep neural networks with ReLU activation
  function
Nonparametric regression using deep neural networks with ReLU activation function
Johannes Schmidt-Hieber
216
810
0
22 Aug 2017
Geometric MCMC for Infinite-Dimensional Inverse Problems
Geometric MCMC for Infinite-Dimensional Inverse Problems
A. Beskos
Mark Girolami
Shiwei Lan
P. Farrell
Andrew M. Stuart
48
143
0
20 Jun 2016
Deep Gaussian Processes
Deep Gaussian Processes
Andreas C. Damianou
Neil D. Lawrence
GP
BDL
120
1,181
0
02 Nov 2012
MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster
MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster
S. Cotter
Gareth O. Roberts
Andrew M. Stuart
D. White
97
480
0
03 Feb 2012
1