ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.14218
  4. Cited By
AutoAugment Input Transformation for Highly Transferable Targeted
  Attacks

AutoAugment Input Transformation for Highly Transferable Targeted Attacks

21 December 2023
Haobo Lu
Xin Liu
Kun He
    AAML
ArXiv (abs)PDFHTML

Papers citing "AutoAugment Input Transformation for Highly Transferable Targeted Attacks"

23 / 23 papers shown
Title
Enhancing the Self-Universality for Transferable Targeted Attacks
Enhancing the Self-Universality for Transferable Targeted Attacks
Zhipeng Wei
Jingjing Chen
Zuxuan Wu
Yueping Jiang
AAML
54
34
0
08 Sep 2022
Feature Importance-aware Transferable Adversarial Attacks
Feature Importance-aware Transferable Adversarial Attacks
Peng Kuang
Hengchang Guo
Zhifei Zhang
Wenxin Liu
Zhan Qin
K. Ren
AAML
74
216
0
29 Jul 2021
Twins: Revisiting the Design of Spatial Attention in Vision Transformers
Twins: Revisiting the Design of Spatial Attention in Vision Transformers
Xiangxiang Chu
Zhi Tian
Yuqing Wang
Bo Zhang
Haibing Ren
Xiaolin K. Wei
Huaxia Xia
Chunhua Shen
ViT
82
1,020
0
28 Apr 2021
Rethinking Spatial Dimensions of Vision Transformers
Rethinking Spatial Dimensions of Vision Transformers
Byeongho Heo
Sangdoo Yun
Dongyoon Han
Sanghyuk Chun
Junsuk Choe
Seong Joon Oh
ViT
506
581
0
30 Mar 2021
Enhancing the Transferability of Adversarial Attacks through Variance
  Tuning
Enhancing the Transferability of Adversarial Attacks through Variance Tuning
Xiaosen Wang
Kun He
AAML
98
393
0
29 Mar 2021
Admix: Enhancing the Transferability of Adversarial Attacks
Admix: Enhancing the Transferability of Adversarial Attacks
Xiaosen Wang
Xu He
Jingdong Wang
Kun He
AAML
123
201
0
31 Jan 2021
On Success and Simplicity: A Second Look at Transferable Targeted
  Attacks
On Success and Simplicity: A Second Look at Transferable Targeted Attacks
Zhengyu Zhao
Zhuoran Liu
Martha Larson
AAML
106
125
0
21 Dec 2020
Perturbing Across the Feature Hierarchy to Improve Standard and Strict
  Blackbox Attack Transferability
Perturbing Across the Feature Hierarchy to Improve Standard and Strict Blackbox Attack Transferability
Nathan Inkawhich
Kevin J. Liang
Binghui Wang
Matthew J. Inkawhich
Lawrence Carin
Yiran Chen
AAML
45
90
0
29 Apr 2020
Transferable Perturbations of Deep Feature Distributions
Transferable Perturbations of Deep Feature Distributions
Nathan Inkawhich
Kevin J. Liang
Lawrence Carin
Yiran Chen
AAML
61
86
0
27 Apr 2020
Faster AutoAugment: Learning Augmentation Strategies using
  Backpropagation
Faster AutoAugment: Learning Augmentation Strategies using Backpropagation
Ryuichiro Hataya
Jan Zdenek
Kazuki Yoshizoe
Hideki Nakayama
74
205
0
16 Nov 2019
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DVMedIm
142
18,134
0
28 May 2019
Population Based Augmentation: Efficient Learning of Augmentation Policy
  Schedules
Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules
Daniel Ho
Eric Liang
Ion Stoica
Pieter Abbeel
Xi Chen
73
404
0
14 May 2019
Improving Adversarial Robustness via Promoting Ensemble Diversity
Improving Adversarial Robustness via Promoting Ensemble Diversity
Tianyu Pang
Kun Xu
Chao Du
Ning Chen
Jun Zhu
AAML
78
439
0
25 Jan 2019
AutoAugment: Learning Augmentation Policies from Data
AutoAugment: Learning Augmentation Policies from Data
E. D. Cubuk
Barret Zoph
Dandelion Mané
Vijay Vasudevan
Quoc V. Le
131
1,772
0
24 May 2018
Improving Transferability of Adversarial Examples with Input Diversity
Improving Transferability of Adversarial Examples with Input Diversity
Cihang Xie
Zhishuai Zhang
Yuyin Zhou
Song Bai
Jianyu Wang
Zhou Ren
Alan Yuille
AAML
106
1,123
0
19 Mar 2018
MobileNetV2: Inverted Residuals and Linear Bottlenecks
MobileNetV2: Inverted Residuals and Linear Bottlenecks
Mark Sandler
Andrew G. Howard
Menglong Zhu
A. Zhmoginov
Liang-Chieh Chen
184
19,284
0
13 Jan 2018
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
321
20,023
0
07 Oct 2016
Xception: Deep Learning with Depthwise Separable Convolutions
Xception: Deep Learning with Depthwise Separable Convolutions
François Chollet
MDEBDLPINN
1.4K
14,575
0
07 Oct 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN3DV
775
36,813
0
25 Aug 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILMAAML
543
5,897
0
08 Jul 2016
Inception-v4, Inception-ResNet and the Impact of Residual Connections on
  Learning
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
Christian Szegedy
Sergey Ioffe
Vincent Vanhoucke
Alexander A. Alemi
377
14,253
0
23 Feb 2016
Rethinking the Inception Architecture for Computer Vision
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DVBDL
883
27,373
0
02 Dec 2015
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAMLGAN
277
19,066
0
20 Dec 2014
1