Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2312.12477
Cited By
When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook
19 December 2023
Wenzhao Jiang
Hao Liu
Hui Xiong
CML
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook"
20 / 20 papers shown
Title
Beyond Grid Data: Exploring Graph Neural Networks for Earth Observation
Shan Zhao
Zhaiyu Chen
Zhitong Xiong
Yilei Shi
Sudipan Saha
Xiao Xiang Zhu
AI4CE
43
2
0
05 Nov 2024
Addressing Shortcomings in Fair Graph Learning Datasets: Towards a New Benchmark
Xiaowei Qian
Zhimeng Guo
Jialiang Li
Haitao Mao
Bingheng Li
Suhang Wang
Yao Ma
36
4
0
09 Mar 2024
Learning Invariant Molecular Representation in Latent Discrete Space
Zhuang Xiang
Qiang Zhang
Keyan Ding
Yatao Bian
Xiao Wang
Jingsong Lv
Hongyang Chen
Huajun Chen
OOD
26
16
0
22 Oct 2023
Causality and Independence Enhancement for Biased Node Classification
Guoxin Chen
Yongqing Wang
Fangda Guo
Qinglang Guo
Jiangli Shao
Huawei Shen
Xueqi Cheng
CML
AI4CE
OOD
35
14
0
14 Oct 2023
Towards out-of-distribution generalizable predictions of chemical kinetics properties
Zihao W. Wang
Yongqiang Chen
Yang Duan
Weijiang Li
Bo Han
James Cheng
Hanghang Tong
OOD
28
6
0
04 Oct 2023
Mind the Label Shift of Augmentation-based Graph OOD Generalization
Junchi Yu
Jian Liang
R. He
34
27
0
27 Mar 2023
A Survey on Graph Counterfactual Explanations: Definitions, Methods, Evaluation, and Research Challenges
Mario Alfonso Prado-Romero
Bardh Prenkaj
Giovanni Stilo
F. Giannotti
CML
27
30
0
21 Oct 2022
Practical Adversarial Attacks on Spatiotemporal Traffic Forecasting Models
F. Liu
Haowen Liu
Wenzhao Jiang
OOD
64
33
0
05 Oct 2022
Feature-based Learning for Diverse and Privacy-Preserving Counterfactual Explanations
Vy Vo
Trung Le
Van Nguyen
He Zhao
Edwin V. Bonilla
Gholamreza Haffari
Dinh Q. Phung
CML
40
13
0
27 Sep 2022
How Powerful are Spectral Graph Neural Networks
Xiyuan Wang
Muhan Zhang
70
179
0
23 May 2022
Trustworthy Graph Neural Networks: Aspects, Methods and Trends
He Zhang
Bang Wu
Xingliang Yuan
Shirui Pan
Hanghang Tong
Jian Pei
41
104
0
16 May 2022
Discovering Invariant Rationales for Graph Neural Networks
Yingmin Wu
Xiang Wang
An Zhang
Xiangnan He
Tat-Seng Chua
OOD
AI4CE
93
222
0
30 Jan 2022
DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise Annotations
Yuanfeng Ji
Lu Zhang
Jiaxiang Wu
Bing Wu
Long-Kai Huang
...
Ping Luo
Shuigeng Zhou
Junzhou Huang
Peilin Zhao
Yatao Bian
OOD
58
73
0
24 Jan 2022
MugRep: A Multi-Task Hierarchical Graph Representation Learning Framework for Real Estate Appraisal
Weijia Zhang
Hao Liu
Lijun Zha
Hengshu Zhu
Ji Liu
Dejing Dou
Hui Xiong
37
29
0
12 Jul 2021
Causal Learning for Socially Responsible AI
Lu Cheng
Ahmadreza Mosallanezhad
Paras Sheth
Huan Liu
65
13
0
25 Apr 2021
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
Ana Lucic
Maartje ter Hoeve
Gabriele Tolomei
Maarten de Rijke
Fabrizio Silvestri
110
142
0
05 Feb 2021
Explainability in Graph Neural Networks: A Taxonomic Survey
Hao Yuan
Haiyang Yu
Shurui Gui
Shuiwang Ji
164
590
0
31 Dec 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
900
0
02 Mar 2020
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
J. Leskovec
GNN
197
885
0
07 Jun 2018
Learning Representations for Counterfactual Inference
Fredrik D. Johansson
Uri Shalit
David Sontag
CML
OOD
BDL
215
719
0
12 May 2016
1