Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2312.12474
Cited By
Principled Weight Initialisation for Input-Convex Neural Networks
19 December 2023
Pieter-Jan Hoedt
G. Klambauer
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Principled Weight Initialisation for Input-Convex Neural Networks"
8 / 8 papers shown
Title
Revisiting Residual Connections: Orthogonal Updates for Stable and Efficient Deep Networks
Giyeong Oh
Woohyun Cho
Siyeol Kim
Suhwan Choi
Younjae Yu
2
0
0
17 May 2025
Gradient Networks
Shreyas Chaudhari
Srinivasa Pranav
J. M. F. Moura
58
0
0
28 Jan 2025
Optimal Flow Matching: Learning Straight Trajectories in Just One Step
Nikita Kornilov
Petr Mokrov
Alexander Gasnikov
Alexander Korotin
34
11
0
19 Mar 2024
GNN-VPA: A Variance-Preserving Aggregation Strategy for Graph Neural Networks
Lisa Schneckenreiter
Richard Freinschlag
Florian Sestak
Johannes Brandstetter
G. Klambauer
Andreas Mayr
46
5
0
07 Mar 2024
Real-Time Machine-Learning-Based Optimization Using Input Convex LSTM
Zihao Wang
Donghan Yu
Zhe Wu
29
6
0
13 Nov 2023
Rapid training of deep neural networks without skip connections or normalization layers using Deep Kernel Shaping
James Martens
Andy Ballard
Guillaume Desjardins
G. Swirszcz
Valentin Dalibard
Jascha Narain Sohl-Dickstein
S. Schoenholz
88
43
0
05 Oct 2021
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
233
348
0
14 Jun 2018
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
187
599
0
22 Sep 2016
1