ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.12226
  4. Cited By
On the Parameterization of Second-Order Optimization Effective Towards
  the Infinite Width
v1v2 (latest)

On the Parameterization of Second-Order Optimization Effective Towards the Infinite Width

19 December 2023
Satoki Ishikawa
Ryo Karakida
ArXiv (abs)PDFHTML

Papers citing "On the Parameterization of Second-Order Optimization Effective Towards the Infinite Width"

2 / 2 papers shown
Title
Local Loss Optimization in the Infinite Width: Stable Parameterization of Predictive Coding Networks and Target Propagation
Local Loss Optimization in the Infinite Width: Stable Parameterization of Predictive Coding Networks and Target Propagation
Satoki Ishikawa
Rio Yokota
Ryo Karakida
131
0
0
04 Nov 2024
Universal Statistics of Fisher Information in Deep Neural Networks: Mean
  Field Approach
Universal Statistics of Fisher Information in Deep Neural Networks: Mean Field Approach
Ryo Karakida
S. Akaho
S. Amari
FedML
201
146
0
04 Jun 2018
1