Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2312.11230
Cited By
Dirichlet-based Uncertainty Quantification for Personalized Federated Learning with Improved Posterior Networks
18 December 2023
Nikita Kotelevskii
Samuel Horváth
Karthik Nandakumar
Martin Takáč
Maxim Panov
UQCV
FedML
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Dirichlet-based Uncertainty Quantification for Personalized Federated Learning with Improved Posterior Networks"
7 / 7 papers shown
Title
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
L. J. L. Lopez
Shaza Elsharief
Dhiyaa Al Jorf
Firas Darwish
Congbo Ma
Farah E. Shamout
101
0
0
04 May 2025
On Second-Order Scoring Rules for Epistemic Uncertainty Quantification
Viktor Bengs
Eyke Hüllermeier
Willem Waegeman
UQCV
202
25
0
30 Jan 2023
MedMNIST v2 -- A large-scale lightweight benchmark for 2D and 3D biomedical image classification
Jiancheng Yang
Rui Shi
D. Wei
Zequan Liu
Lin Zhao
B. Ke
Hanspeter Pfister
Bingbing Ni
VLM
171
647
0
27 Oct 2021
FedBN: Federated Learning on Non-IID Features via Local Batch Normalization
Xiaoxiao Li
Meirui Jiang
Xiaofei Zhang
Michael Kamp
Qi Dou
OOD
FedML
168
787
0
15 Feb 2021
Adaptive Personalized Federated Learning
Yuyang Deng
Mohammad Mahdi Kamani
M. Mahdavi
FedML
212
542
0
30 Mar 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1