ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.11230
  4. Cited By
Dirichlet-based Uncertainty Quantification for Personalized Federated
  Learning with Improved Posterior Networks

Dirichlet-based Uncertainty Quantification for Personalized Federated Learning with Improved Posterior Networks

18 December 2023
Nikita Kotelevskii
Samuel Horváth
Karthik Nandakumar
Martin Takáč
Maxim Panov
    UQCV
    FedML
    OOD
ArXivPDFHTML

Papers citing "Dirichlet-based Uncertainty Quantification for Personalized Federated Learning with Improved Posterior Networks"

7 / 7 papers shown
Title
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
L. J. L. Lopez
Shaza Elsharief
Dhiyaa Al Jorf
Firas Darwish
Congbo Ma
Farah E. Shamout
101
0
0
04 May 2025
On Second-Order Scoring Rules for Epistemic Uncertainty Quantification
On Second-Order Scoring Rules for Epistemic Uncertainty Quantification
Viktor Bengs
Eyke Hüllermeier
Willem Waegeman
UQCV
202
25
0
30 Jan 2023
MedMNIST v2 -- A large-scale lightweight benchmark for 2D and 3D
  biomedical image classification
MedMNIST v2 -- A large-scale lightweight benchmark for 2D and 3D biomedical image classification
Jiancheng Yang
Rui Shi
D. Wei
Zequan Liu
Lin Zhao
B. Ke
Hanspeter Pfister
Bingbing Ni
VLM
171
647
0
27 Oct 2021
FedBN: Federated Learning on Non-IID Features via Local Batch
  Normalization
FedBN: Federated Learning on Non-IID Features via Local Batch Normalization
Xiaoxiao Li
Meirui Jiang
Xiaofei Zhang
Michael Kamp
Qi Dou
OOD
FedML
168
787
0
15 Feb 2021
Adaptive Personalized Federated Learning
Adaptive Personalized Federated Learning
Yuyang Deng
Mohammad Mahdi Kamani
M. Mahdavi
FedML
212
542
0
30 Mar 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1