ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.10586
  4. Cited By
Few-Shot Learning from Augmented Label-Uncertain Queries in Bongard-HOI

Few-Shot Learning from Augmented Label-Uncertain Queries in Bongard-HOI

17 December 2023
Qinqian Lei
Bo Wang
Robby T. Tan
    VLM
ArXivPDFHTML

Papers citing "Few-Shot Learning from Augmented Label-Uncertain Queries in Bongard-HOI"

13 / 13 papers shown
Title
2PCNet: Two-Phase Consistency Training for Day-to-Night Unsupervised
  Domain Adaptive Object Detection
2PCNet: Two-Phase Consistency Training for Day-to-Night Unsupervised Domain Adaptive Object Detection
Mikhail Kennerley
Jian-Gang Wang
B. Veeravalli
R. Tan
ObjD
70
39
0
24 Mar 2023
Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression
Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression
Zigang Geng
Ke Sun
Bin Xiao
Zhaoxiang Zhang
Jingdong Wang
3DH
85
248
0
06 Apr 2021
Negative Data Augmentation
Negative Data Augmentation
Abhishek Sinha
Kumar Ayush
Jiaming Song
Burak Uzkent
Hongxia Jin
Stefano Ermon
64
73
0
09 Feb 2021
Spatially Conditioned Graphs for Detecting Human-Object Interactions
Spatially Conditioned Graphs for Detecting Human-Object Interactions
Frederic Z. Zhang
Dylan Campbell
Stephen Gould
62
127
0
11 Dec 2020
Meta-Baseline: Exploring Simple Meta-Learning for Few-Shot Learning
Meta-Baseline: Exploring Simple Meta-Learning for Few-Shot Learning
Yinbo Chen
Zhuang Liu
Huijuan Xu
Trevor Darrell
Xiaolong Wang
200
346
0
09 Mar 2020
RandAugment: Practical automated data augmentation with a reduced search
  space
RandAugment: Practical automated data augmentation with a reduced search space
E. D. Cubuk
Barret Zoph
Jonathon Shlens
Quoc V. Le
MQ
208
3,480
0
30 Sep 2019
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness
  of MAML
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML
Aniruddh Raghu
M. Raghu
Samy Bengio
Oriol Vinyals
300
644
0
19 Sep 2019
LGM-Net: Learning to Generate Matching Networks for Few-Shot Learning
LGM-Net: Learning to Generate Matching Networks for Few-Shot Learning
Huaiyu Li
Weiming Dong
Xing Mei
Chongyang Ma
Feiyue Huang
Bao-Gang Hu
OffRL
70
98
0
15 May 2019
On First-Order Meta-Learning Algorithms
On First-Order Meta-Learning Algorithms
Alex Nichol
Joshua Achiam
John Schulman
221
2,229
0
08 Mar 2018
Learning to Compare: Relation Network for Few-Shot Learning
Learning to Compare: Relation Network for Few-Shot Learning
Flood Sung
Yongxin Yang
Li Zhang
Tao Xiang
Philip Torr
Timothy M. Hospedales
269
4,042
0
16 Nov 2017
Detecting and Recognizing Human-Object Interactions
Detecting and Recognizing Human-Object Interactions
Georgia Gkioxari
Ross B. Girshick
Piotr Dollár
Kaiming He
74
575
0
24 Apr 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
806
11,866
0
09 Mar 2017
Matching Networks for One Shot Learning
Matching Networks for One Shot Learning
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
VLM
347
7,316
0
13 Jun 2016
1