Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2312.08875
Cited By
What, How, and When Should Object Detectors Update in Continually Changing Test Domains?
12 December 2023
Jayeon Yoo
Dongkwan Lee
Inseop Chung
Donghyun Kim
Nojun Kwak
OOD
VLM
TTA
Re-assign community
ArXiv
PDF
HTML
Papers citing
"What, How, and When Should Object Detectors Update in Continually Changing Test Domains?"
9 / 9 papers shown
Title
PointSAM: Pointly-Supervised Segment Anything Model for Remote Sensing Images
Nanqing Liu
Xun Xu
Yongyi Su
Haojie Zhang
Heng-Chao Li
VLM
40
14
0
20 Sep 2024
Hyperparameters in Continual Learning: A Reality Check
Sungmin Cha
Kyunghyun Cho
CLL
71
2
0
14 Mar 2024
Energy-Based Test Sample Adaptation for Domain Generalization
Zehao Xiao
Xiantong Zhen
Tianran Ouyang
Cees G. M. Snoek
TTA
48
17
0
22 Feb 2023
DELTA: degradation-free fully test-time adaptation
Bowen Zhao
Chen Chen
Shutao Xia
TTA
86
55
0
30 Jan 2023
TeST: Test-time Self-Training under Distribution Shift
Samarth Sinha
Peter V. Gehler
Francesco Locatello
Bernt Schiele
TTA
OOD
32
23
0
23 Sep 2022
AdaptFormer: Adapting Vision Transformers for Scalable Visual Recognition
Shoufa Chen
Chongjian Ge
Zhan Tong
Jiangliu Wang
Yibing Song
Jue Wang
Ping Luo
149
638
0
26 May 2022
TTAPS: Test-Time Adaption by Aligning Prototypes using Self-Supervision
Alexander Bartler
Florian Bender
Felix Wiewel
B. Yang
TTA
40
9
0
18 May 2022
Unbiased Mean Teacher for Cross-domain Object Detection
Jinhong Deng
Wen Li
Yuhua Chen
Lixin Duan
79
286
0
02 Mar 2020
Feature Pyramid Networks for Object Detection
Nayeon Lee
Piotr Dollár
Ross B. Girshick
Kaiming He
Bharath Hariharan
Serge J. Belongie
ObjD
183
21,819
0
09 Dec 2016
1