ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.08701
  4. Cited By
Enabling End-to-End Secure Federated Learning in Biomedical Research on
  Heterogeneous Computing Environments with APPFLx

Enabling End-to-End Secure Federated Learning in Biomedical Research on Heterogeneous Computing Environments with APPFLx

14 December 2023
Trung-Hieu Hoang
Jordan D. Fuhrman
Ravi K. Madduri
Miao Li
Pranshu Chaturvedi
Zilinghan Li
Kibaek Kim
Minseok Ryu
Ryan Chard
Eliu A. Huerta
Maryellen L. Giger
ArXivPDFHTML

Papers citing "Enabling End-to-End Secure Federated Learning in Biomedical Research on Heterogeneous Computing Environments with APPFLx"

8 / 8 papers shown
Title
Advances in APPFL: A Comprehensive and Extensible Federated Learning Framework
Advances in APPFL: A Comprehensive and Extensible Federated Learning Framework
Zilinghan Li
Shilan He
Ze Yang
Minseok Ryu
Kibaek Kim
Ravi K. Madduri
FedML
60
6
0
17 Sep 2024
Secure Federated Learning Across Heterogeneous Cloud and
  High-Performance Computing Resources -- A Case Study on Federated Fine-tuning
  of LLaMA 2
Secure Federated Learning Across Heterogeneous Cloud and High-Performance Computing Resources -- A Case Study on Federated Fine-tuning of LLaMA 2
Zilinghan Li
Shilan He
Pranshu Chaturvedi
Volodymyr V. Kindratenko
Eliu A. Huerta
Kibaek Kim
Ravi K. Madduri
FedML
18
3
0
19 Feb 2024
FedSZ: Leveraging Error-Bounded Lossy Compression for Federated Learning
  Communications
FedSZ: Leveraging Error-Bounded Lossy Compression for Federated Learning Communications
Grant Wilkins
Sheng Di
Jon C. Calhoun
Zilinghan Li
Kibaek Kim
Robert Underwood
Richard Mortier
Franck Cappello
FedML
45
2
0
20 Dec 2023
FedCompass: Efficient Cross-Silo Federated Learning on Heterogeneous
  Client Devices using a Computing Power Aware Scheduler
FedCompass: Efficient Cross-Silo Federated Learning on Heterogeneous Client Devices using a Computing Power Aware Scheduler
Zilinghan Li
Pranshu Chaturvedi
Shilan He
Han-qiu Chen
Gagandeep Singh
Volodymyr V. Kindratenko
Eliu A. Huerta
Kibaek Kim
Ravi K. Madduri
FedML
42
9
0
26 Sep 2023
Test-Time Robust Personalization for Federated Learning
Test-Time Robust Personalization for Federated Learning
Liang Jiang
Tao R. Lin
FedML
OOD
TTA
82
43
0
22 May 2022
Towards Personalized Federated Learning
Towards Personalized Federated Learning
A. Tan
Han Yu
Li-zhen Cui
Qiang Yang
FedML
AI4CE
209
841
0
01 Mar 2021
funcX: A Federated Function Serving Fabric for Science
funcX: A Federated Function Serving Fabric for Science
Ryan Chard
Y. Babuji
Zhuozhao Li
Tyler J. Skluzacek
A. Woodard
Ben Blaiszik
Ian Foster
Kyle Chard
44
187
0
07 May 2020
Survey of Personalization Techniques for Federated Learning
Survey of Personalization Techniques for Federated Learning
V. Kulkarni
Milind Kulkarni
Aniruddha Pant
FedML
182
326
0
19 Mar 2020
1