ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.08307
  4. Cited By
3DReact: Geometric deep learning for chemical reactions

3DReact: Geometric deep learning for chemical reactions

13 December 2023
Puck van Gerwen
K. Briling
Charlotte Bunne
Vignesh Ram Somnath
Rubén Laplaza
Andreas Krause
C. Corminboeuf
    3DV
ArXivPDFHTML

Papers citing "3DReact: Geometric deep learning for chemical reactions"

3 / 3 papers shown
Title
Transferable Learning of Reaction Pathways from Geometric Priors
Transferable Learning of Reaction Pathways from Geometric Priors
Juno Nam
Miguel Steiner
Max Misterka
Soojung Yang
Avni P. Singhal
Rafael Gómez-Bombarelli
32
0
0
21 Apr 2025
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and
  Nonlocal Effects
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
174
246
0
01 May 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
215
1,240
0
08 Jan 2021
1