Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2312.07952
Cited By
Meta-learning to Calibrate Gaussian Processes with Deep Kernels for Regression Uncertainty Estimation
13 December 2023
Tomoharu Iwata
Atsutoshi Kumagai
BDL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Meta-learning to Calibrate Gaussian Processes with Deep Kernels for Regression Uncertainty Estimation"
18 / 18 papers shown
Title
Transformer Neural Processes: Uncertainty-Aware Meta Learning Via Sequence Modeling
Tung Nguyen
Aditya Grover
BDL
UQCV
68
106
0
09 Jul 2022
Loss function based second-order Jensen inequality and its application to particle variational inference
Futoshi Futami
Tomoharu Iwata
N. Ueda
Issei Sato
Masashi Sugiyama
43
4
0
09 Jun 2021
Beyond Pinball Loss: Quantile Methods for Calibrated Uncertainty Quantification
Youngseog Chung
Willie Neiswanger
I. Char
J. Schneider
UQCV
148
88
0
18 Nov 2020
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDL
UQCV
269
1,911
0
12 Nov 2020
Prediction Intervals: Split Normal Mixture from Quality-Driven Deep Ensembles
Tárik S. Salem
H. Langseth
H. Ramampiaro
UQCV
52
36
0
19 Jul 2020
Adaptive Deep Kernel Learning
Prudencio Tossou
Basile Dura
François Laviolette
M. Marchand
Alexandre Lacoste
74
29
0
28 May 2019
Conformal calibrators
V. Vovk
Ivan Petej
Paolo Toccaceli
A. Gammerman
188
26
0
18 Feb 2019
A Simple Baseline for Bayesian Uncertainty in Deep Learning
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
BDL
UQCV
82
806
0
07 Feb 2019
Attentive Neural Processes
Hyunjik Kim
A. Mnih
Jonathan Richard Schwarz
M. Garnelo
S. M. Ali Eslami
Dan Rosenbaum
Oriol Vinyals
Yee Whye Teh
88
440
0
17 Jan 2019
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaML
GNN
AI4TS
AI4CE
672
8,496
0
03 Jan 2019
Conditional Neural Processes
M. Garnelo
Dan Rosenbaum
Chris J. Maddison
Tiago Ramalho
D. Saxton
Murray Shanahan
Yee Whye Teh
Danilo Jimenez Rezende
S. M. Ali Eslami
UQCV
BDL
85
700
0
04 Jul 2018
Meta-learning with differentiable closed-form solvers
Luca Bertinetto
João F. Henriques
Philip Torr
Andrea Vedaldi
ODL
82
928
0
21 May 2018
Fast calibrated additive quantile regression
Matteo Fasiolo
S. Wood
Margaux Zaffran
Raphael Nedellec
Y. Goude
36
197
0
11 Jul 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
806
11,866
0
09 Mar 2017
Deep Bayesian Active Learning with Image Data
Y. Gal
Riashat Islam
Zoubin Ghahramani
BDL
UQCV
68
1,732
0
08 Mar 2017
Matching Networks for One Shot Learning
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
VLM
347
7,316
0
13 Jun 2016
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
232
885
0
06 Nov 2015
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCV
BDL
114
944
0
18 Feb 2015
1