ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.06645
  4. Cited By
Beyond Classification: Definition and Density-based Estimation of
  Calibration in Object Detection

Beyond Classification: Definition and Density-based Estimation of Calibration in Object Detection

11 December 2023
Teodora Popordanoska
A. Tiulpin
Matthew B. Blaschko
ArXivPDFHTML

Papers citing "Beyond Classification: Definition and Density-based Estimation of Calibration in Object Detection"

22 / 22 papers shown
Title
A Consistent and Differentiable Lp Canonical Calibration Error Estimator
A Consistent and Differentiable Lp Canonical Calibration Error Estimator
Teodora Popordanoska
Raphael Sayer
Matthew B. Blaschko
UQCV
52
34
0
13 Oct 2022
Towards Improving Calibration in Object Detection Under Domain Shift
Towards Improving Calibration in Object Detection Under Domain Shift
Muhammad Akhtar Munir
M. H. Khan
M. Sarfraz
Mohsen Ali
21
23
0
15 Sep 2022
Mask DINO: Towards A Unified Transformer-based Framework for Object
  Detection and Segmentation
Mask DINO: Towards A Unified Transformer-based Framework for Object Detection and Segmentation
Feng Li
Hao Zhang
Hu-Sheng Xu
Siyi Liu
Lei Zhang
L. Ni
H. Shum
ISeg
113
381
0
06 Jun 2022
Soft Calibration Objectives for Neural Networks
Soft Calibration Objectives for Neural Networks
A. Karandikar
Nicholas Cain
Dustin Tran
Balaji Lakshminarayanan
Jonathon Shlens
Michael C. Mozer
Becca Roelofs
UQCV
65
89
0
30 Jul 2021
Meta-Cal: Well-controlled Post-hoc Calibration by Ranking
Meta-Cal: Well-controlled Post-hoc Calibration by Ranking
Xingchen Ma
Matthew B. Blaschko
55
35
0
10 May 2021
Estimating and Evaluating Regression Predictive Uncertainty in Deep
  Object Detectors
Estimating and Evaluating Regression Predictive Uncertainty in Deep Object Detectors
Ali Harakeh
Steven L. Waslander
UQCV
66
41
0
13 Jan 2021
Improved Trainable Calibration Method for Neural Networks on Medical
  Imaging Classification
Improved Trainable Calibration Method for Neural Networks on Medical Imaging Classification
G. Liang
Yu Zhang
Xiaoqin Wang
Nathan Jacobs
UQCV
58
61
0
09 Sep 2020
Multivariate Confidence Calibration for Object Detection
Multivariate Confidence Calibration for Object Detection
Fabian Küppers
Jan Kronenberger
Amirhossein Shantia
Anselm Haselhoff
UQCV
31
112
0
28 Apr 2020
Mix-n-Match: Ensemble and Compositional Methods for Uncertainty
  Calibration in Deep Learning
Mix-n-Match: Ensemble and Compositional Methods for Uncertainty Calibration in Deep Learning
Jize Zhang
B. Kailkhura
T. Y. Han
UQCV
66
224
0
16 Mar 2020
Calibrating Deep Neural Networks using Focal Loss
Calibrating Deep Neural Networks using Focal Loss
Jishnu Mukhoti
Viveka Kulharia
Amartya Sanyal
Stuart Golodetz
Philip Torr
P. Dokania
UQCV
81
459
0
21 Feb 2020
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep
  Learning
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning
Arsenii Ashukha
Alexander Lyzhov
Dmitry Molchanov
Dmitry Vetrov
UQCV
FedML
75
318
0
15 Feb 2020
Calibration tests in multi-class classification: A unifying framework
Calibration tests in multi-class classification: A unifying framework
David Widmann
Fredrik Lindsten
Dave Zachariah
75
92
0
24 Oct 2019
Verified Uncertainty Calibration
Verified Uncertainty Calibration
Ananya Kumar
Percy Liang
Tengyu Ma
141
353
0
23 Sep 2019
A Survey of Autonomous Driving: Common Practices and Emerging
  Technologies
A Survey of Autonomous Driving: Common Practices and Emerging Technologies
Ekim Yurtsever
Jacob Lambert
Alexander Carballo
K. Takeda
83
1,370
0
12 Jun 2019
When Does Label Smoothing Help?
When Does Label Smoothing Help?
Rafael Müller
Simon Kornblith
Geoffrey E. Hinton
UQCV
167
1,938
0
06 Jun 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
159
1,688
0
06 Jun 2019
FCOS: Fully Convolutional One-Stage Object Detection
FCOS: Fully Convolutional One-Stage Object Detection
Zhi Tian
Chunhua Shen
Hao Chen
Tong He
ObjD
114
4,997
0
02 Apr 2019
Evaluating model calibration in classification
Evaluating model calibration in classification
Juozas Vaicenavicius
David Widmann
Carl R. Andersson
Fredrik Lindsten
Jacob Roll
Thomas B. Schon
UQCV
127
198
0
19 Feb 2019
Localization Recall Precision (LRP): A New Performance Metric for Object
  Detection
Localization Recall Precision (LRP): A New Performance Metric for Object Detection
Kemal Oksuz
Baris Can Cam
Emre Akbas
Sinan Kalkan
ObjD
57
110
0
04 Jul 2018
YOLOv3: An Incremental Improvement
YOLOv3: An Incremental Improvement
Joseph Redmon
Ali Farhadi
ObjD
105
21,386
0
08 Apr 2018
The Cityscapes Dataset for Semantic Urban Scene Understanding
The Cityscapes Dataset for Semantic Urban Scene Understanding
Marius Cordts
Mohamed Omran
Sebastian Ramos
Timo Rehfeld
Markus Enzweiler
Rodrigo Benenson
Uwe Franke
Stefan Roth
Bernt Schiele
921
11,587
0
06 Apr 2016
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
369
43,524
0
01 May 2014
1