ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.06576
  4. Cited By
HyPE-GT: where Graph Transformers meet Hyperbolic Positional Encodings

HyPE-GT: where Graph Transformers meet Hyperbolic Positional Encodings

11 December 2023
Kushal Bose
Swagatam Das
ArXivPDFHTML

Papers citing "HyPE-GT: where Graph Transformers meet Hyperbolic Positional Encodings"

23 / 23 papers shown
Title
Pure Transformers are Powerful Graph Learners
Pure Transformers are Powerful Graph Learners
Jinwoo Kim
Tien Dat Nguyen
Seonwoo Min
Sungjun Cho
Moontae Lee
Honglak Lee
Seunghoon Hong
83
200
0
06 Jul 2022
Recipe for a General, Powerful, Scalable Graph Transformer
Recipe for a General, Powerful, Scalable Graph Transformer
Ladislav Rampášek
Mikhail Galkin
Vijay Prakash Dwivedi
Anh Tuan Luu
Guy Wolf
Dominique Beaini
111
564
0
25 May 2022
Global Self-Attention as a Replacement for Graph Convolution
Global Self-Attention as a Replacement for Graph Convolution
Md Shamim Hussain
Mohammed J Zaki
D. Subramanian
ViT
59
127
0
07 Aug 2021
GraphiT: Encoding Graph Structure in Transformers
GraphiT: Encoding Graph Structure in Transformers
Grégoire Mialon
Dexiong Chen
Margot Selosse
Julien Mairal
98
167
0
10 Jun 2021
Rethinking Graph Transformers with Spectral Attention
Rethinking Graph Transformers with Spectral Attention
Devin Kreuzer
Dominique Beaini
William L. Hamilton
Vincent Létourneau
Prudencio Tossou
91
536
0
07 Jun 2021
Simple and Deep Graph Convolutional Networks
Simple and Deep Graph Convolutional Networks
Ming Chen
Zhewei Wei
Zengfeng Huang
Bolin Ding
Yaliang Li
GNN
116
1,485
0
04 Jul 2020
Improving Graph Neural Network Expressivity via Subgraph Isomorphism
  Counting
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting
Giorgos Bouritsas
Fabrizio Frasca
Stefanos Zafeiriou
M. Bronstein
116
430
0
16 Jun 2020
DeeperGCN: All You Need to Train Deeper GCNs
DeeperGCN: All You Need to Train Deeper GCNs
Guohao Li
Chenxin Xiong
Ali K. Thabet
Guohao Li
GNN
189
442
0
13 Jun 2020
On the Bottleneck of Graph Neural Networks and its Practical
  Implications
On the Bottleneck of Graph Neural Networks and its Practical Implications
Uri Alon
Eran Yahav
GNN
81
686
0
09 Jun 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
303
2,730
0
02 May 2020
Principal Neighbourhood Aggregation for Graph Nets
Principal Neighbourhood Aggregation for Graph Nets
Gabriele Corso
Luca Cavalleri
Dominique Beaini
Pietro Lio
Petar Velickovic
GNN
104
667
0
12 Apr 2020
Benchmarking Graph Neural Networks
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
412
940
0
02 Mar 2020
Graph Transformer Networks
Graph Transformer Networks
Seongjun Yun
Minbyul Jeong
Raehyun Kim
Jaewoo Kang
Hyunwoo J. Kim
127
972
0
06 Nov 2019
Hyperbolic Graph Neural Networks
Hyperbolic Graph Neural Networks
Qi Liu
Maximilian Nickel
Douwe Kiela
AI4CE
GNN
75
381
0
28 Oct 2019
Hyperbolic Image Embeddings
Hyperbolic Image Embeddings
Valentin Khrulkov
L. Mirvakhabova
E. Ustinova
Ivan Oseledets
Victor Lempitsky
81
293
0
03 Apr 2019
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
Christopher Morris
Martin Ritzert
Matthias Fey
William L. Hamilton
J. E. Lenssen
Gaurav Rattan
Martin Grohe
GNN
192
1,634
0
04 Oct 2018
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
238
7,642
0
01 Oct 2018
Hyperbolic Neural Networks
Hyperbolic Neural Networks
O. Ganea
Gary Bécigneul
Thomas Hofmann
54
603
0
23 May 2018
Deeper Insights into Graph Convolutional Networks for Semi-Supervised
  Learning
Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning
Qimai Li
Zhichao Han
Xiao-Ming Wu
GNN
SSL
182
2,826
0
22 Jan 2018
Graph Attention Networks
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
473
20,138
0
30 Oct 2017
Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
614
29,051
0
09 Sep 2016
Layer Normalization
Layer Normalization
Jimmy Lei Ba
J. Kiros
Geoffrey E. Hinton
410
10,482
0
21 Jul 2016
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
463
43,289
0
11 Feb 2015
1