ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.04813
  4. Cited By
DARNet: Bridging Domain Gaps in Cross-Domain Few-Shot Segmentation with
  Dynamic Adaptation

DARNet: Bridging Domain Gaps in Cross-Domain Few-Shot Segmentation with Dynamic Adaptation

8 December 2023
Haoran Fan
Qi Fan
M. Pagnucco
Yang Song
ArXivPDFHTML

Papers citing "DARNet: Bridging Domain Gaps in Cross-Domain Few-Shot Segmentation with Dynamic Adaptation"

4 / 4 papers shown
Title
Adapting In-Domain Few-Shot Segmentation to New Domains without Retraining
Adapting In-Domain Few-Shot Segmentation to New Domains without Retraining
Qi Fan
Kaiqi Liu
Nian Liu
Hisham Cholakkal
Rao Muhammad Anwer
Wenbin Li
Yang Gao
71
0
0
30 Apr 2025
Cross-Domain Few-Shot Segmentation via Iterative Support-Query
  Correspondence Mining
Cross-Domain Few-Shot Segmentation via Iterative Support-Query Correspondence Mining
Jiahao Nie
Yun Xing
Gongjie Zhang
Pei Yan
Aoran Xiao
Yap-Peng Tan
Alex C. Kot
Shijian Lu
28
5
0
16 Jan 2024
Few Shot Semantic Segmentation: a review of methodologies, benchmarks,
  and open challenges
Few Shot Semantic Segmentation: a review of methodologies, benchmarks, and open challenges
Nicolás Catalano
Matteo Matteucci
VLM
32
3
0
12 Apr 2023
Few-Shot Segmentation Without Meta-Learning: A Good Transductive
  Inference Is All You Need?
Few-Shot Segmentation Without Meta-Learning: A Good Transductive Inference Is All You Need?
Malik Boudiaf
H. Kervadec
Imtiaz Masud Ziko
Pablo Piantanida
Ismail Ben Ayed
Jose Dolz
VLM
177
187
0
11 Dec 2020
1