Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2312.04542
Cited By
SoK: Unintended Interactions among Machine Learning Defenses and Risks
7 December 2023
Vasisht Duddu
S. Szyller
Nadarajah Asokan
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SoK: Unintended Interactions among Machine Learning Defenses and Risks"
43 / 93 papers shown
Title
What Neural Networks Memorize and Why: Discovering the Long Tail via Influence Estimation
Vitaly Feldman
Chiyuan Zhang
TDI
140
464
0
09 Aug 2020
Label-Only Membership Inference Attacks
Christopher A. Choquette-Choo
Florian Tramèr
Nicholas Carlini
Nicolas Papernot
MIACV
MIALM
90
511
0
28 Jul 2020
Subpopulation Data Poisoning Attacks
Matthew Jagielski
Giorgio Severi
Niklas Pousette Harger
Alina Oprea
AAML
SILM
55
119
0
24 Jun 2020
Domain Generalization using Causal Matching
Divyat Mahajan
Shruti Tople
Amit Sharma
OOD
87
335
0
12 Jun 2020
An Overview of Privacy in Machine Learning
Emiliano De Cristofaro
SILM
59
84
0
18 May 2020
Inverting Gradients -- How easy is it to break privacy in federated learning?
Jonas Geiping
Hartmut Bauermeister
Hannah Dröge
Michael Moeller
FedML
100
1,228
0
31 Mar 2020
On the Effectiveness of Mitigating Data Poisoning Attacks with Gradient Shaping
Sanghyun Hong
Varun Chandrasekaran
Yigitcan Kaya
Tudor Dumitras
Nicolas Papernot
AAML
82
136
0
26 Feb 2020
Rethinking Bias-Variance Trade-off for Generalization of Neural Networks
Zitong Yang
Yaodong Yu
Chong You
Jacob Steinhardt
Yi-An Ma
67
185
0
26 Feb 2020
Understanding and Mitigating the Tradeoff Between Robustness and Accuracy
Aditi Raghunathan
Sang Michael Xie
Fanny Yang
John C. Duchi
Percy Liang
AAML
84
228
0
25 Feb 2020
Estimating Training Data Influence by Tracing Gradient Descent
G. Pruthi
Frederick Liu
Mukund Sundararajan
Satyen Kale
TDI
81
408
0
19 Feb 2020
Radioactive data: tracing through training
Alexandre Sablayrolles
Matthijs Douze
Cordelia Schmid
Hervé Jégou
74
75
0
03 Feb 2020
Privacy for All: Demystify Vulnerability Disparity of Differential Privacy against Membership Inference Attack
Bo Zhang
Ruotong Yu
Haipei Sun
Yanying Li
Jun Xu
Wendy Hui Wang
AAML
45
13
0
24 Jan 2020
Characterizing the Decision Boundary of Deep Neural Networks
Hamid Karimi
Hanyu Wang
Jiliang Tang
46
67
0
24 Dec 2019
Deep Neural Network Fingerprinting by Conferrable Adversarial Examples
Nils Lukas
Yuxuan Zhang
Florian Kerschbaum
MLAU
FedML
AAML
64
145
0
02 Dec 2019
The Secret Revealer: Generative Model-Inversion Attacks Against Deep Neural Networks
Yuheng Zhang
R. Jia
Hengzhi Pei
Wenxiao Wang
Yue Liu
D. Song
AAML
111
419
0
17 Nov 2019
Thieves on Sesame Street! Model Extraction of BERT-based APIs
Kalpesh Krishna
Gaurav Singh Tomar
Ankur P. Parikh
Nicolas Papernot
Mohit Iyyer
MIACV
MLAU
107
201
0
27 Oct 2019
Explanations can be manipulated and geometry is to blame
Ann-Kathrin Dombrowski
Maximilian Alber
Christopher J. Anders
M. Ackermann
K. Müller
Pan Kessel
AAML
FAtt
81
331
0
19 Jun 2019
Differential Privacy Has Disparate Impact on Model Accuracy
Eugene Bagdasaryan
Vitaly Shmatikov
142
481
0
28 May 2019
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
89
1,839
0
06 May 2019
HopSkipJumpAttack: A Query-Efficient Decision-Based Attack
Jianbo Chen
Michael I. Jordan
Martin J. Wainwright
AAML
63
667
0
03 Apr 2019
Fooling Neural Network Interpretations via Adversarial Model Manipulation
Juyeon Heo
Sunghwan Joo
Taesup Moon
AAML
FAtt
93
203
0
06 Feb 2019
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
227
1,647
0
28 Dec 2018
Robustness May Be at Odds with Accuracy
Dimitris Tsipras
Shibani Santurkar
Logan Engstrom
Alexander Turner
Aleksander Madry
AAML
102
1,778
0
30 May 2018
Exploiting Unintended Feature Leakage in Collaborative Learning
Luca Melis
Congzheng Song
Emiliano De Cristofaro
Vitaly Shmatikov
FedML
145
1,474
0
10 May 2018
A Reductions Approach to Fair Classification
Alekh Agarwal
A. Beygelzimer
Miroslav Dudík
John Langford
Hanna M. Wallach
FaML
224
1,100
0
06 Mar 2018
Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring
Yossi Adi
Carsten Baum
Moustapha Cissé
Benny Pinkas
Joseph Keshet
61
677
0
13 Feb 2018
Certified Robustness to Adversarial Examples with Differential Privacy
Mathias Lécuyer
Vaggelis Atlidakis
Roxana Geambasu
Daniel J. Hsu
Suman Jana
SILM
AAML
94
934
0
09 Feb 2018
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
124
3,957
0
06 Feb 2018
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
214
1,842
0
30 Nov 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
304
12,063
0
19 Jun 2017
A Closer Look at Memorization in Deep Networks
Devansh Arpit
Stanislaw Jastrzebski
Nicolas Ballas
David M. Krueger
Emmanuel Bengio
...
Tegan Maharaj
Asja Fischer
Aaron Courville
Yoshua Bengio
Simon Lacoste-Julien
TDI
122
1,818
0
16 Jun 2017
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
198
3,871
0
10 Apr 2017
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
203
2,885
0
14 Mar 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
188
5,986
0
04 Mar 2017
On the (Statistical) Detection of Adversarial Examples
Kathrin Grosse
Praveen Manoharan
Nicolas Papernot
Michael Backes
Patrick McDaniel
AAML
76
713
0
21 Feb 2017
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
339
4,626
0
10 Nov 2016
Membership Inference Attacks against Machine Learning Models
Reza Shokri
M. Stronati
Congzheng Song
Vitaly Shmatikov
SLR
MIALM
MIACV
249
4,122
0
18 Oct 2016
Equality of Opportunity in Supervised Learning
Moritz Hardt
Eric Price
Nathan Srebro
FaML
222
4,307
0
07 Oct 2016
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
297
20,003
0
07 Oct 2016
Stealing Machine Learning Models via Prediction APIs
Florian Tramèr
Fan Zhang
Ari Juels
Michael K. Reiter
Thomas Ristenpart
SILM
MLAU
107
1,805
0
09 Sep 2016
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
203
6,121
0
01 Jul 2016
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
277
19,049
0
20 Dec 2014
Hacking Smart Machines with Smarter Ones: How to Extract Meaningful Data from Machine Learning Classifiers
G. Ateniese
G. Felici
L. Mancini
A. Spognardi
Antonio Villani
Domenico Vitali
75
460
0
19 Jun 2013
Previous
1
2