ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.04167
  4. Cited By
Mixture of Dynamical Variational Autoencoders for Multi-Source
  Trajectory Modeling and Separation

Mixture of Dynamical Variational Autoencoders for Multi-Source Trajectory Modeling and Separation

7 December 2023
Xiaoyu Lin
Laurent Girin
Xavier Alameda-Pineda
ArXivPDFHTML

Papers citing "Mixture of Dynamical Variational Autoencoders for Multi-Source Trajectory Modeling and Separation"

4 / 4 papers shown
Title
Learning a Neural Association Network for Self-supervised Multi-Object Tracking
Shuai Li
Michael G. Burke
S. Ramamoorthy
Juergen Gall
VOT
83
0
0
18 Nov 2024
UnOVOST: Unsupervised Offline Video Object Segmentation and Tracking
UnOVOST: Unsupervised Offline Video Object Segmentation and Tracking
Jonathon Luiten
Idil Esen Zulfikar
Bastian Leibe
VOS
130
62
0
15 Jan 2020
Simple Online and Realtime Tracking with a Deep Association Metric
Simple Online and Realtime Tracking with a Deep Association Metric
N. Wojke
Alex Bewley
Dietrich Paulus
VOT
261
3,466
0
21 Mar 2017
You Only Look Once: Unified, Real-Time Object Detection
You Only Look Once: Unified, Real-Time Object Detection
Joseph Redmon
S. Divvala
Ross B. Girshick
Ali Farhadi
ObjD
295
36,368
0
08 Jun 2015
1