Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2312.03951
Cited By
Understanding the Role of Optimization in Double Descent
6 December 2023
Chris Yuhao Liu
Jeffrey Flanigan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding the Role of Optimization in Double Descent"
21 / 21 papers shown
Title
Unraveling the Enigma of Double Descent: An In-depth Analysis through the Lens of Learned Feature Space
Yufei Gu
Xiaoqing Zheng
T. Aste
53
3
0
20 Oct 2023
Double Descent Demystified: Identifying, Interpreting & Ablating the Sources of a Deep Learning Puzzle
Rylan Schaeffer
Mikail Khona
Zachary Robertson
Akhilan Boopathy
Kateryna Pistunova
J. Rocks
Ila Rani Fiete
Oluwasanmi Koyejo
108
34
0
24 Mar 2023
DSD
2
^2
2
: Can We Dodge Sparse Double Descent and Compress the Neural Network Worry-Free?
Victor Quétu
Enzo Tartaglione
49
7
0
02 Mar 2023
Can we avoid Double Descent in Deep Neural Networks?
Victor Quétu
Enzo Tartaglione
AI4CE
46
3
0
26 Feb 2023
Optimal Activation Functions for the Random Features Regression Model
Jianxin Wang
José Bento
47
3
0
31 May 2022
Model, sample, and epoch-wise descents: exact solution of gradient flow in the random feature model
A. Bodin
N. Macris
87
13
0
22 Oct 2021
Conditioning of Random Feature Matrices: Double Descent and Generalization Error
Zhijun Chen
Hayden Schaeffer
67
12
0
21 Oct 2021
Mitigating deep double descent by concatenating inputs
John Chen
Qihan Wang
Anastasios Kyrillidis
BDL
27
3
0
02 Jul 2021
Asymptotics of Ridge Regression in Convolutional Models
Mojtaba Sahraee-Ardakan
Tung Mai
Anup B. Rao
Ryan Rossi
S. Rangan
A. Fletcher
MLT
23
2
0
08 Mar 2021
Low Curvature Activations Reduce Overfitting in Adversarial Training
Vasu Singla
Sahil Singla
David Jacobs
Soheil Feizi
AAML
56
47
0
15 Feb 2021
Distilling Double Descent
Andrew Cotter
A. Menon
Harikrishna Narasimhan
A. S. Rawat
Sashank J. Reddi
Yichen Zhou
37
7
0
13 Feb 2021
Provable Benefits of Overparameterization in Model Compression: From Double Descent to Pruning Neural Networks
Xiangyu Chang
Yingcong Li
Samet Oymak
Christos Thrampoulidis
56
50
0
16 Dec 2020
Dimensionality reduction, regularization, and generalization in overparameterized regressions
Ningyuan Huang
D. Hogg
Soledad Villar
36
15
0
23 Nov 2020
Evaluation of Neural Architectures Trained with Square Loss vs Cross-Entropy in Classification Tasks
Like Hui
M. Belkin
UQCV
AAML
VLM
46
171
0
12 Jun 2020
Double Double Descent: On Generalization Errors in Transfer Learning between Linear Regression Tasks
Yehuda Dar
Richard G. Baraniuk
106
19
0
12 Jun 2020
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
94
800
0
26 Feb 2020
Rethinking Bias-Variance Trade-off for Generalization of Neural Networks
Zitong Yang
Yaodong Yu
Chong You
Jacob Steinhardt
Yi-An Ma
65
184
0
26 Feb 2020
Surprises in High-Dimensional Ridgeless Least Squares Interpolation
Trevor Hastie
Andrea Montanari
Saharon Rosset
Robert Tibshirani
165
743
0
19 Mar 2019
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
213
1,638
0
28 Dec 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
252
8,856
0
25 Aug 2017
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
131
1,823
0
01 Jul 2014
1