Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2312.01538
Cited By
v1
v2
v3 (latest)
Recurrent Distance Filtering for Graph Representation Learning
3 December 2023
Yuhui Ding
Antonio Orvieto
Bobby He
Thomas Hofmann
GNN
Re-assign community
ArXiv (abs)
PDF
HTML
Github (15★)
Papers citing
"Recurrent Distance Filtering for Graph Representation Learning"
7 / 7 papers shown
Title
On Vanishing Gradients, Over-Smoothing, and Over-Squashing in GNNs: Bridging Recurrent and Graph Learning
Alvaro Arroyo
Alessio Gravina
Benjamin Gutteridge
Federico Barbero
Claudio Gallicchio
Xiaowen Dong
Michael M. Bronstein
P. Vandergheynst
151
13
0
15 Feb 2025
GraphMinNet: Learning Dependencies in Graphs with Light Complexity Minimal Architecture
Md Atik Ahamed
Andrew Cheng
Qiang Ye
Q. Cheng
GNN
114
0
0
01 Feb 2025
Mamba-Based Graph Convolutional Networks: Tackling Over-smoothing with Selective State Space
Xin He
Yansen Wang
Wenqi Fan
Xu Shen
Xin Juan
Rui Miao
Xin Wang
182
2
0
26 Jan 2025
What Can We Learn from State Space Models for Machine Learning on Graphs?
Yinan Huang
Siqi Miao
Pan Li
90
8
0
09 Jun 2024
State Space Model for New-Generation Network Alternative to Transformers: A Survey
Tianlin Li
Shiao Wang
Yuhe Ding
Yuehang Li
Wentao Wu
...
Bowei Jiang
Chenglong Li
Yaowei Wang
Yonghong Tian
Jin Tang
Mamba
147
53
0
15 Apr 2024
Adaptive Message Passing: A General Framework to Mitigate Oversmoothing, Oversquashing, and Underreaching
Federico Errica
Henrik Christiansen
Viktor Zaverkin
Takashi Maruyama
Mathias Niepert
Francesco Alesiani
218
10
0
27 Dec 2023
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
641
958
0
02 Mar 2020
1