ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.18062
28
1

Understanding Your Agent: Leveraging Large Language Models for Behavior Explanation

29 November 2023
Xijia Zhang
Yue (Sophie) Guo
Simon Stepputtis
Katia P. Sycara
Joseph Campbell
    LLMAG
    LM&Ro
ArXivPDFHTML
Abstract

Intelligent agents such as robots are increasingly deployed in real-world, safety-critical settings. It is vital that these agents are able to explain the reasoning behind their decisions to human counterparts; however, their behavior is often produced by uninterpretable models such as deep neural networks. We propose an approach to generate natural language explanations for an agent's behavior based only on observations of states and actions, thus making our method independent from the underlying model's representation. For such models, we first learn a behavior representation and subsequently use it to produce plausible explanations with minimal hallucination while affording user interaction with a pre-trained large language model. We evaluate our method in a multi-agent search-and-rescue environment and demonstrate the effectiveness of our explanations for agents executing various behaviors. Through user studies and empirical experiments, we show that our approach generates explanations as helpful as those produced by a human domain expert while enabling beneficial interactions such as clarification and counterfactual queries.

View on arXiv
Comments on this paper