ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.17267
  4. Cited By
E-ViLM: Efficient Video-Language Model via Masked Video Modeling with
  Semantic Vector-Quantized Tokenizer

E-ViLM: Efficient Video-Language Model via Masked Video Modeling with Semantic Vector-Quantized Tokenizer

28 November 2023
Jacob Zhiyuan Fang
Skyler Zheng
Vasu Sharma
Robinson Piramuthu
    VLM
ArXiv (abs)PDFHTML

Papers citing "E-ViLM: Efficient Video-Language Model via Masked Video Modeling with Semantic Vector-Quantized Tokenizer"

2 / 52 papers shown
Title
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
434
43,832
0
01 May 2014
Estimating or Propagating Gradients Through Stochastic Neurons for
  Conditional Computation
Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation
Yoshua Bengio
Nicholas Léonard
Aaron Courville
396
3,157
0
15 Aug 2013
Previous
12