Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2311.15990
Cited By
Should We Learn Most Likely Functions or Parameters?
27 November 2023
Shikai Qiu
Tim G. J. Rudner
Sanyam Kapoor
Andrew Gordon Wilson
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Should We Learn Most Likely Functions or Parameters?"
7 / 7 papers shown
Title
Preferential Normalizing Flows
Petrus Mikkola
Luigi Acerbi
Arto Klami
33
1
0
11 Oct 2024
Can a Confident Prior Replace a Cold Posterior?
Martin Marek
Brooks Paige
Pavel Izmailov
UQCV
BDL
42
4
0
02 Mar 2024
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
Theodore Papamarkou
Maria Skoularidou
Konstantina Palla
Laurence Aitchison
Julyan Arbel
...
David Rügamer
Yee Whye Teh
Max Welling
Andrew Gordon Wilson
Ruqi Zhang
UQCV
BDL
44
27
0
01 Feb 2024
Tractable Function-Space Variational Inference in Bayesian Neural Networks
Tim G. J. Rudner
Zonghao Chen
Yee Whye Teh
Y. Gal
85
39
0
28 Dec 2023
Function-Space Regularization in Neural Networks: A Probabilistic Perspective
Tim G. J. Rudner
Sanyam Kapoor
Shikai Qiu
A. Wilson
37
12
0
28 Dec 2023
Informative Priors Improve the Reliability of Multimodal Clinical Data Classification
L. J. L. Lopez
Tim G. J. Rudner
Karan Singhal
45
3
0
17 Nov 2023
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
308
2,892
0
15 Sep 2016
1