ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.14361
  4. Cited By
Deciphering and integrating invariants for neural operator learning with
  various physical mechanisms
v1v2 (latest)

Deciphering and integrating invariants for neural operator learning with various physical mechanisms

24 November 2023
Rui Zhang
Qi Meng
Zhi-Ming Ma
    AI4CE
ArXiv (abs)PDFHTMLGithub (11★)

Papers citing "Deciphering and integrating invariants for neural operator learning with various physical mechanisms"

26 / 26 papers shown
Title
HyperDeepONet: learning operator with complex target function space
  using the limited resources via hypernetwork
HyperDeepONet: learning operator with complex target function space using the limited resources via hypernetwork
Jae Yong Lee
S. Cho
H. Hwang
67
24
0
26 Dec 2023
NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
  Spatial-temporal Decomposition
NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with Spatial-temporal Decomposition
Xinquan Huang
Wenlei Shi
Qi Meng
Yue Wang
Xiaotian Gao
Jia Zhang
Tie-Yan Liu
AI4CE
63
9
0
20 Feb 2023
Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation
Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation
Rui Zhang
Qi Meng
Rongchan Zhu
Yue Wang
Wenlei Shi
Shihua Zhang
Zhi-Ming Ma
Tie-Yan Liu
DiffMAI4CE
197
6
0
10 Feb 2023
Neural Inverse Operators for Solving PDE Inverse Problems
Neural Inverse Operators for Solving PDE Inverse Problems
Roberto Molinaro
Yunan Yang
Bjorn Engquist
Siddhartha Mishra
AI4CE
72
41
0
26 Jan 2023
PDEBENCH: An Extensive Benchmark for Scientific Machine Learning
PDEBENCH: An Extensive Benchmark for Scientific Machine Learning
M. Takamoto
T. Praditia
Raphael Leiteritz
Dan MacKinlay
Francesco Alesiani
Dirk Pflüger
Mathias Niepert
AI4CE
78
237
0
13 Oct 2022
Deep Random Vortex Method for Simulation and Inference of Navier-Stokes
  Equations
Deep Random Vortex Method for Simulation and Inference of Navier-Stokes Equations
Rui Zhang
Tailin Wu
Qi Meng
Yue Wang
Rongchan Zhu
Bingguang Chen
Zhi-Ming Ma
Tie-Yan Liu
64
15
0
20 Jun 2022
NOMAD: Nonlinear Manifold Decoders for Operator Learning
NOMAD: Nonlinear Manifold Decoders for Operator Learning
Jacob H. Seidman
Georgios Kissas
P. Perdikaris
George J. Pappas
AI4CE
91
77
0
07 Jun 2022
Transformer for Partial Differential Equations' Operator Learning
Transformer for Partial Differential Equations' Operator Learning
Zijie Li
Kazem Meidani
A. Farimani
111
171
0
26 May 2022
SCVRL: Shuffled Contrastive Video Representation Learning
SCVRL: Shuffled Contrastive Video Representation Learning
Michael Dorkenwald
Fanyi Xiao
Biagio Brattoli
Joseph Tighe
Davide Modolo
SSL
82
17
0
24 May 2022
SVD Perspectives for Augmenting DeepONet Flexibility and
  Interpretability
SVD Perspectives for Augmenting DeepONet Flexibility and Interpretability
Simone Venturi
T. Casey
117
39
0
27 Apr 2022
U-NO: U-shaped Neural Operators
U-NO: U-shaped Neural Operators
Md Ashiqur Rahman
Zachary E. Ross
Kamyar Azizzadenesheli
AI4CE
114
145
0
23 Apr 2022
Message Passing Neural PDE Solvers
Message Passing Neural PDE Solvers
Johannes Brandstetter
Daniel E. Worrall
Max Welling
AI4CE
102
288
0
07 Feb 2022
Factorized Fourier Neural Operators
Factorized Fourier Neural Operators
Alasdair Tran
A. Mathews
Lexing Xie
Cheng Soon Ong
AI4CE
79
163
0
27 Nov 2021
Multiwavelet-based Operator Learning for Differential Equations
Multiwavelet-based Operator Learning for Differential Equations
Gaurav Gupta
Xiongye Xiao
P. Bogdan
198
220
0
28 Sep 2021
Choose a Transformer: Fourier or Galerkin
Choose a Transformer: Fourier or Galerkin
Shuhao Cao
69
254
0
31 May 2021
VideoMoCo: Contrastive Video Representation Learning with Temporally
  Adversarial Examples
VideoMoCo: Contrastive Video Representation Learning with Temporally Adversarial Examples
Tian Pan
Yibing Song
Tianyu Yang
Wenhao Jiang
Wei Liu
93
225
0
10 Mar 2021
Meta-Learning Dynamics Forecasting Using Task Inference
Meta-Learning Dynamics Forecasting Using Task Inference
Rui Wang
Robin Walters
Rose Yu
OODAI4TSAI4CE
106
35
0
20 Feb 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
509
2,453
0
18 Oct 2020
Spatiotemporal Contrastive Video Representation Learning
Spatiotemporal Contrastive Video Representation Learning
Rui Qian
Tianjian Meng
Boqing Gong
Ming-Hsuan Yang
Haoran Wang
Serge J. Belongie
Huayu Chen
SSLAI4TS
128
501
0
09 Aug 2020
Physics-informed learning of governing equations from scarce data
Physics-informed learning of governing equations from scarce data
Zhao Chen
Yang Liu
Hao Sun
PINNAI4CE
88
397
0
05 May 2020
A Simple Framework for Contrastive Learning of Visual Representations
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
390
18,897
0
13 Feb 2020
A comprehensive deep learning-based approach to reduced order modeling
  of nonlinear time-dependent parametrized PDEs
A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs
S. Fresca
Luca Dede'
Andrea Manzoni
AI4CE
87
266
0
12 Jan 2020
Dynamic Convolution: Attention over Convolution Kernels
Dynamic Convolution: Attention over Convolution Kernels
Yinpeng Chen
Xiyang Dai
Mengchen Liu
Dongdong Chen
Lu Yuan
Zicheng Liu
109
895
0
07 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
565
42,639
0
03 Dec 2019
DeepONet: Learning nonlinear operators for identifying differential
  equations based on the universal approximation theorem of operators
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
248
2,158
0
08 Oct 2019
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg3DV
1.9K
77,441
0
18 May 2015
1