Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2311.13454
Cited By
Explaining high-dimensional text classifiers
22 November 2023
Odelia Melamed
Rich Caruana
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Explaining high-dimensional text classifiers"
20 / 20 papers shown
Title
A Survey of Human-in-the-loop for Machine Learning
Xingjiao Wu
Luwei Xiao
Yixuan Sun
Junhang Zhang
Tianlong Ma
Liangbo He
SyDa
101
525
0
02 Aug 2021
The Dimpled Manifold Model of Adversarial Examples in Machine Learning
A. Shamir
Odelia Melamed
Oriel BenShmuel
AAML
54
50
0
18 Jun 2021
Fairwashing Explanations with Off-Manifold Detergent
Christopher J. Anders
Plamen Pasliev
Ann-Kathrin Dombrowski
K. Müller
Pan Kessel
FAtt
FaML
50
97
0
20 Jul 2020
You Autocomplete Me: Poisoning Vulnerabilities in Neural Code Completion
R. Schuster
Congzheng Song
Eran Tromer
Vitaly Shmatikov
SILM
AAML
100
156
0
05 Jul 2020
Shapley explainability on the data manifold
Christopher Frye
Damien de Mijolla
T. Begley
Laurence Cowton
Megan Stanley
Ilya Feige
FAtt
TDI
41
99
0
01 Jun 2020
Towards Explainable NLP: A Generative Explanation Framework for Text Classification
Hui Liu
Qingyu Yin
William Yang Wang
92
148
0
01 Nov 2018
Interpreting Neural Networks With Nearest Neighbors
Eric Wallace
Shi Feng
Jordan L. Boyd-Graber
AAML
FAtt
MILM
103
54
0
08 Sep 2018
Explaining Image Classifiers by Counterfactual Generation
C. Chang
Elliot Creager
Anna Goldenberg
David Duvenaud
VLM
73
264
0
20 Jul 2018
Pathologies of Neural Models Make Interpretations Difficult
Shi Feng
Eric Wallace
Alvin Grissom II
Mohit Iyyer
Pedro Rodriguez
Jordan L. Boyd-Graber
AAML
FAtt
76
321
0
20 Apr 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
224
3,186
0
01 Feb 2018
Evasion Attacks against Machine Learning at Test Time
Battista Biggio
Igino Corona
Davide Maiorca
B. Nelson
Nedim Srndic
Pavel Laskov
Giorgio Giacinto
Fabio Roli
AAML
157
2,153
0
21 Aug 2017
A causal framework for explaining the predictions of black-box sequence-to-sequence models
David Alvarez-Melis
Tommi Jaakkola
CML
351
204
0
06 Jul 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
21,939
0
22 May 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
123
1,857
0
20 May 2017
Right for the Right Reasons: Training Differentiable Models by Constraining their Explanations
A. Ross
M. C. Hughes
Finale Doshi-Velez
FAtt
120
589
0
10 Mar 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
188
5,989
0
04 Mar 2017
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,990
0
16 Feb 2016
Practical Black-Box Attacks against Machine Learning
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
S. Jha
Z. Berkay Celik
A. Swami
MLAU
AAML
75
3,678
0
08 Feb 2016
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
270
14,927
1
21 Dec 2013
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
312
7,295
0
20 Dec 2013
1