Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2311.10468
Cited By
Using Cooperative Game Theory to Prune Neural Networks
17 November 2023
M. Diaz-Ortiz
Benjamin Kempinski
Daphne Cornelisse
Yoram Bachrach
Tal Kachman
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Using Cooperative Game Theory to Prune Neural Networks"
7 / 7 papers shown
Title
Explaining Quantum Circuits with Shapley Values: Towards Explainable Quantum Machine Learning
R. Heese
Thore Gerlach
Sascha Mucke
Sabine Muller
Matthias Jakobs
Nico Piatkowski
24
18
0
22 Jan 2023
FastSHAP: Real-Time Shapley Value Estimation
N. Jethani
Mukund Sudarshan
Ian Covert
Su-In Lee
Rajesh Ranganath
TDI
FAtt
67
127
0
15 Jul 2021
Negotiating Team Formation Using Deep Reinforcement Learning
Yoram Bachrach
Richard Everett
Edward Hughes
Angeliki Lazaridou
Joel Z Leibo
Marc Lanctot
Michael Bradley Johanson
Wojciech M. Czarnecki
T. Graepel
45
35
0
20 Oct 2020
The Lottery Ticket Hypothesis for Pre-trained BERT Networks
Tianlong Chen
Jonathan Frankle
Shiyu Chang
Sijia Liu
Yang Zhang
Zhangyang Wang
Michael Carbin
156
377
0
23 Jul 2020
What is the State of Neural Network Pruning?
Davis W. Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John Guttag
191
1,032
0
06 Mar 2020
Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference
Y. Gal
Zoubin Ghahramani
UQCV
BDL
202
745
0
06 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,145
0
06 Jun 2015
1