Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2311.07426
Cited By
Optimising Human-AI Collaboration by Learning Convincing Explanations
13 November 2023
Alex J. Chan
Alihan Huyuk
M. Schaar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimising Human-AI Collaboration by Learning Convincing Explanations"
21 / 21 papers shown
Title
Inverse Decision Modeling: Learning Interpretable Representations of Behavior
Daniel Jarrett
Alihan Huyuk
M. Schaar
AI4CE
55
28
0
28 Oct 2023
Practical Approaches for Fair Learning with Multitype and Multivariate Sensitive Attributes
Tennison Liu
Alex J. Chan
B. V. Breugel
M. Schaar
FaML
41
2
0
11 Nov 2022
Estimating and Penalizing Induced Preference Shifts in Recommender Systems
Micah Carroll
Anca Dragan
Stuart J. Russell
Dylan Hadfield-Menell
OffRL
84
43
0
25 Apr 2022
POETREE: Interpretable Policy Learning with Adaptive Decision Trees
Alizée Pace
Alex J. Chan
M. Schaar
OffRL
37
17
0
15 Mar 2022
Inverse Online Learning: Understanding Non-Stationary and Reactionary Policies
Alex J. Chan
Alicia Curth
M. Schaar
CML
OffRL
36
8
0
14 Mar 2022
Uncalibrated Models Can Improve Human-AI Collaboration
Kailas Vodrahalli
Tobias Gerstenberg
James Zou
HAI
75
30
0
12 Feb 2022
Explaining Latent Representations with a Corpus of Examples
Jonathan Crabbé
Zhaozhi Qian
F. Imrie
M. Schaar
FAtt
40
38
0
28 Oct 2021
Inverse Contextual Bandits: Learning How Behavior Evolves over Time
Alihan Huyuk
Daniel Jarrett
M. Schaar
CML
OffRL
49
11
0
13 Jul 2021
The Medkit-Learn(ing) Environment: Medical Decision Modelling through Simulation
Alex J. Chan
Ioana Bica
Alihan Huyuk
Daniel Jarrett
M. Schaar
63
14
0
08 Jun 2021
Scalable Bayesian Inverse Reinforcement Learning
Alex J. Chan
M. Schaar
OffRL
BDL
70
67
0
12 Feb 2021
Sequential Explanations with Mental Model-Based Policies
A. Yeung
Shalmali Joshi
Joseph Jay Williams
Frank Rudzicz
FAtt
LRM
56
15
0
17 Jul 2020
Consistent Estimators for Learning to Defer to an Expert
Hussein Mozannar
David Sontag
49
201
0
02 Jun 2020
What is Interpretable? Using Machine Learning to Design Interpretable Decision-Support Systems
O. Lahav
Nicholas Mastronarde
M. Schaar
27
30
0
27 Nov 2018
Interpreting Neural Networks With Nearest Neighbors
Eric Wallace
Shi Feng
Jordan L. Boyd-Graber
AAML
FAtt
MILM
100
54
0
08 Sep 2018
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
83
1,855
0
31 May 2018
AI safety via debate
G. Irving
Paul Christiano
Dario Amodei
234
217
0
02 May 2018
MNL-Bandit: A Dynamic Learning Approach to Assortment Selection
Shipra Agrawal
Vashist Avadhanula
Vineet Goyal
A. Zeevi
125
158
0
13 Jun 2017
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
184
3,865
0
10 Apr 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
175
5,968
0
04 Mar 2017
Cascading Bandits: Learning to Rank in the Cascade Model
Branislav Kveton
Csaba Szepesvári
Zheng Wen
Azin Ashkan
168
284
0
10 Feb 2015
An MDP-based Recommender System
Guy Shani
Ronen I. Brafman
David Heckerman
LRM
101
970
0
12 Dec 2012
1