ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.07025
  4. Cited By
Embarassingly Simple Dataset Distillation

Embarassingly Simple Dataset Distillation

13 November 2023
Yunzhen Feng
Ramakrishna Vedantam
Julia Kempe
    DD
ArXivPDFHTML

Papers citing "Embarassingly Simple Dataset Distillation"

19 / 19 papers shown
Title
A Label is Worth a Thousand Images in Dataset Distillation
A Label is Worth a Thousand Images in Dataset Distillation
Tian Qin
Zhiwei Deng
David Alvarez-Melis
DD
159
12
0
15 Jun 2024
A Comprehensive Survey of Dataset Distillation
A Comprehensive Survey of Dataset Distillation
Shiye Lei
Dacheng Tao
DD
82
91
0
13 Jan 2023
Data Distillation: A Survey
Data Distillation: A Survey
Noveen Sachdeva
Julian McAuley
DD
81
76
0
11 Jan 2023
Scaling Up Dataset Distillation to ImageNet-1K with Constant Memory
Scaling Up Dataset Distillation to ImageNet-1K with Constant Memory
Justin Cui
Ruochen Wang
Si Si
Cho-Jui Hsieh
DD
88
137
0
19 Nov 2022
What Can the Neural Tangent Kernel Tell Us About Adversarial Robustness?
What Can the Neural Tangent Kernel Tell Us About Adversarial Robustness?
Nikolaos Tsilivis
Julia Kempe
AAML
70
20
0
11 Oct 2022
Federated Learning via Decentralized Dataset Distillation in
  Resource-Constrained Edge Environments
Federated Learning via Decentralized Dataset Distillation in Resource-Constrained Edge Environments
Rui Song
Dai Liu
Da Chen
Andreas Festag
Carsten Trinitis
Martin Schulz
Alois C. Knoll
DD
FedML
79
62
0
24 Aug 2022
Can we achieve robustness from data alone?
Can we achieve robustness from data alone?
Nikolaos Tsilivis
Jingtong Su
Julia Kempe
OOD
DD
74
18
0
24 Jul 2022
Dataset Distillation using Neural Feature Regression
Dataset Distillation using Neural Feature Regression
Yongchao Zhou
E. Nezhadarya
Jimmy Ba
DD
FedML
69
157
0
01 Jun 2022
Dataset Condensation via Efficient Synthetic-Data Parameterization
Dataset Condensation via Efficient Synthetic-Data Parameterization
Jang-Hyun Kim
Jinuk Kim
Seong Joon Oh
Sangdoo Yun
Hwanjun Song
Joonhyun Jeong
Jung-Woo Ha
Hyun Oh Song
DD
472
168
0
30 May 2022
FedSynth: Gradient Compression via Synthetic Data in Federated Learning
FedSynth: Gradient Compression via Synthetic Data in Federated Learning
Shengyuan Hu
Jack Goetz
Kshitiz Malik
Hongyuan Zhan
Zhe Liu
Yue Liu
DD
FedML
67
39
0
04 Apr 2022
Dataset Distillation by Matching Training Trajectories
Dataset Distillation by Matching Training Trajectories
George Cazenavette
Tongzhou Wang
Antonio Torralba
Alexei A. Efros
Jun-Yan Zhu
FedML
DD
170
387
0
22 Mar 2022
Dataset Condensation with Distribution Matching
Dataset Condensation with Distribution Matching
Bo Zhao
Hakan Bilen
DD
75
303
0
08 Oct 2021
Deep Learning on a Data Diet: Finding Important Examples Early in
  Training
Deep Learning on a Data Diet: Finding Important Examples Early in Training
Mansheej Paul
Surya Ganguli
Gintare Karolina Dziugaite
105
457
0
15 Jul 2021
Optimizing Millions of Hyperparameters by Implicit Differentiation
Optimizing Millions of Hyperparameters by Implicit Differentiation
Jonathan Lorraine
Paul Vicol
David Duvenaud
DD
106
414
0
06 Nov 2019
Introduction to Coresets: Accurate Coresets
Introduction to Coresets: Accurate Coresets
Ibrahim Jubran
Alaa Maalouf
Dan Feldman
26
26
0
19 Oct 2019
Limitations of Lazy Training of Two-layers Neural Networks
Limitations of Lazy Training of Two-layers Neural Networks
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
55
143
0
21 Jun 2019
An Empirical Study of Example Forgetting during Deep Neural Network
  Learning
An Empirical Study of Example Forgetting during Deep Neural Network Learning
Mariya Toneva
Alessandro Sordoni
Rémi Tachet des Combes
Adam Trischler
Yoshua Bengio
Geoffrey J. Gordon
107
733
0
12 Dec 2018
Truncated Back-propagation for Bilevel Optimization
Truncated Back-propagation for Bilevel Optimization
Amirreza Shaban
Ching-An Cheng
Nathan Hatch
Byron Boots
99
266
0
25 Oct 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
811
11,894
0
09 Mar 2017
1