ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.06633
  4. Cited By
The Pros and Cons of Using Machine Learning and Interpretable Machine
  Learning Methods in psychiatry detection applications, specifically
  depression disorder: A Brief Review

The Pros and Cons of Using Machine Learning and Interpretable Machine Learning Methods in psychiatry detection applications, specifically depression disorder: A Brief Review

11 November 2023
Hossein Simchi
Samira Tajik
    AI4MH
ArXivPDFHTML

Papers citing "The Pros and Cons of Using Machine Learning and Interpretable Machine Learning Methods in psychiatry detection applications, specifically depression disorder: A Brief Review"

7 / 7 papers shown
Title
Towards Outcome-Driven Patient Subgroups: A Machine Learning Analysis
  Across Six Depression Treatment Studies
Towards Outcome-Driven Patient Subgroups: A Machine Learning Analysis Across Six Depression Treatment Studies
D. Benrimoh
Akiva Kleinerman
T. Furukawa
C. Reynolds
E. Lenze
...
S. Qassim
A. Anacleto
A. Kapelner
Ariel Rosenfeld
G. Turecki
8
7
0
24 Mar 2023
A Picture May Be Worth a Thousand Lives: An Interpretable Artificial
  Intelligence Strategy for Predictions of Suicide Risk from Social Media
  Images
A Picture May Be Worth a Thousand Lives: An Interpretable Artificial Intelligence Strategy for Predictions of Suicide Risk from Social Media Images
Yael Badian
Yaakov Ophir
Refael Tikochinski
Nitay Calderon
A. Klomek
Roi Reichart
47
4
0
19 Feb 2023
Care for the Mind Amid Chronic Diseases: An Interpretable AI Approach Using IoT
Care for the Mind Amid Chronic Diseases: An Interpretable AI Approach Using IoT
Jiaheng Xie
Xiaohang Zhao
Xiang Liu
Xiao Fang
OOD
119
2
0
08 Nov 2022
Modern Views of Machine Learning for Precision Psychiatry
Modern Views of Machine Learning for Precision Psychiatry
Z. Chen
Prathamesh Kulkarni
Kulkarni
I. Galatzer-Levy
Benedetta Bigio
C. Nasca
Yu Zhang
59
98
0
04 Apr 2022
RobIn: A Robust Interpretable Deep Network for Schizophrenia Diagnosis
RobIn: A Robust Interpretable Deep Network for Schizophrenia Diagnosis
Daniel Organisciak
Hubert P. H. Shum
E. Nwoye
Wai Lok Woo
OOD
50
19
0
31 Mar 2022
Predicting Mood Disorder Symptoms with Remotely Collected Videos Using
  an Interpretable Multimodal Dynamic Attention Fusion Network
Predicting Mood Disorder Symptoms with Remotely Collected Videos Using an Interpretable Multimodal Dynamic Attention Fusion Network
Tathagat Banerjee
Matthew Kollada
Pablo Gersberg
Oscar Rodriguez
J. Tiller
A. Jaffe
J. Reynders
21
5
0
07 Sep 2021
RuleMatrix: Visualizing and Understanding Classifiers with Rules
RuleMatrix: Visualizing and Understanding Classifiers with Rules
Yao Ming
Huamin Qu
E. Bertini
FAtt
62
215
0
17 Jul 2018
1