ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.05546
  4. Cited By
Multi-Agent Quantum Reinforcement Learning using Evolutionary Optimization
v1v2v3v4 (latest)

Multi-Agent Quantum Reinforcement Learning using Evolutionary Optimization

3 January 2025
Michael Kolle
Felix Topp
Thomy Phan
Philipp Altmann
Jonas Nusslein
Claudia Linnhoff-Popien
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Multi-Agent Quantum Reinforcement Learning using Evolutionary Optimization"

18 / 18 papers shown
Title
Quantum Artificial Intelligence: A Brief Survey
Quantum Artificial Intelligence: A Brief Survey
Matthias Klusch
Jorg Lassig
Daniel Mussig
A. Macaluso
Frank K. Wilhelm
97
5
0
20 Aug 2024
Architectural Influence on Variational Quantum Circuits in Multi-Agent
  Reinforcement Learning: Evolutionary Strategies for Optimization
Architectural Influence on Variational Quantum Circuits in Multi-Agent Reinforcement Learning: Evolutionary Strategies for Optimization
Michael Kolle
Karola Schneider
Sabrina Egger
Felix Topp
Thomy Phan
Philipp Altmann
Jonas Nusslein
Claudia Linnhoff-Popien
96
0
0
30 Jul 2024
eQMARL: Entangled Quantum Multi-Agent Reinforcement Learning for Distributed Cooperation over Quantum Channels
eQMARL: Entangled Quantum Multi-Agent Reinforcement Learning for Distributed Cooperation over Quantum Channels
Alexander C. DeRieux
Walid Saad
122
1
0
24 May 2024
Quantum deep recurrent reinforcement learning
Quantum deep recurrent reinforcement learning
Samuel Yen-Chi Chen
125
23
0
26 Oct 2022
Quantum Multi-Agent Meta Reinforcement Learning
Quantum Multi-Agent Meta Reinforcement Learning
Won Joon Yun
Jihong Park
Joongheon Kim
96
40
0
22 Aug 2022
Uncovering Instabilities in Variational-Quantum Deep Q-Networks
Uncovering Instabilities in Variational-Quantum Deep Q-Networks
Maja Franz
Lucas Wolf
Maniraman Periyasamy
Christian Ufrecht
Daniel D. Scherer
Axel Plinge
Christopher Mutschler
Wolfgang Mauerer
131
30
0
10 Feb 2022
Towards Multi-Agent Reinforcement Learning using Quantum Boltzmann
  Machines
Towards Multi-Agent Reinforcement Learning using Quantum Boltzmann Machines
Tobias Müller
Christoph Roch
Kyrill Schmid
Philipp Altmann
AI4CE
86
6
0
22 Sep 2021
Variational Quantum Reinforcement Learning via Evolutionary Optimization
Variational Quantum Reinforcement Learning via Evolutionary Optimization
Samuel Yen-Chi Chen
Chih-Min Huang
Chia-Wei Hsing
H. Goan
Y. Kao
92
87
0
01 Sep 2021
Introduction to Quantum Reinforcement Learning: Theory and
  PennyLane-based Implementation
Introduction to Quantum Reinforcement Learning: Theory and PennyLane-based Implementation
Yunseok Kwak
Won Joon Yun
Soyi Jung
Jong-Kook Kim
Joongheon Kim
63
49
0
16 Aug 2021
Layerwise learning for quantum neural networks
Layerwise learning for quantum neural networks
Andrea Skolik
Jarrod R. McClean
Masoud Mohseni
Patrick van der Smagt
Martin Leib
71
287
0
26 Jun 2020
Agent57: Outperforming the Atari Human Benchmark
Agent57: Outperforming the Atari Human Benchmark
Adria Puigdomenech Badia
Bilal Piot
Steven Kapturowski
Pablo Sprechmann
Alex Vitvitskyi
Daniel Guo
Charles Blundell
OffRL
109
521
0
30 Mar 2020
Benchmarking Surrogate-Assisted Genetic Recommender Systems
Benchmarking Surrogate-Assisted Genetic Recommender Systems
Thomas Gabor
Philipp Altmann
64
5
0
08 Aug 2019
Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative
  for Training Deep Neural Networks for Reinforcement Learning
Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning
F. Such
Vashisht Madhavan
Edoardo Conti
Joel Lehman
Kenneth O. Stanley
Jeff Clune
155
697
0
18 Dec 2017
Learning with Opponent-Learning Awareness
Learning with Opponent-Learning Awareness
Jakob N. Foerster
Richard Y. Chen
Maruan Al-Shedivat
Shimon Whiteson
Pieter Abbeel
Igor Mordatch
144
541
0
13 Sep 2017
A Survey of Learning in Multiagent Environments: Dealing with
  Non-Stationarity
A Survey of Learning in Multiagent Environments: Dealing with Non-Stationarity
Pablo Hernandez-Leal
Michael Kaisers
T. Baarslag
Enrique Munoz de Cote
90
275
0
28 Jul 2017
Maintaining cooperation in complex social dilemmas using deep
  reinforcement learning
Maintaining cooperation in complex social dilemmas using deep reinforcement learning
Adam Lerer
A. Peysakhovich
129
160
0
04 Jul 2017
Multi-agent Reinforcement Learning in Sequential Social Dilemmas
Multi-agent Reinforcement Learning in Sequential Social Dilemmas
Joel Z Leibo
V. Zambaldi
Marc Lanctot
J. Marecki
T. Graepel
99
612
0
10 Feb 2017
Safe, Multi-Agent, Reinforcement Learning for Autonomous Driving
Safe, Multi-Agent, Reinforcement Learning for Autonomous Driving
Shai Shalev-Shwartz
Shaked Shammah
Amnon Shashua
125
840
0
11 Oct 2016
1