ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.05034
  4. Cited By
Just-in-time Quantization with Processing-In-Memory for Efficient ML
  Training

Just-in-time Quantization with Processing-In-Memory for Efficient ML Training

8 November 2023
M. Ibrahim
Shaizeen Aga
Ada Li
Suchita Pati
Mahzabeen Islam
ArXivPDFHTML

Papers citing "Just-in-time Quantization with Processing-In-Memory for Efficient ML Training"

4 / 4 papers shown
Title
ZeRO++: Extremely Efficient Collective Communication for Giant Model
  Training
ZeRO++: Extremely Efficient Collective Communication for Giant Model Training
Guanhua Wang
Heyang Qin
S. A. Jacobs
Connor Holmes
Samyam Rajbhandari
Olatunji Ruwase
Feng Yan
Lei Yang
Yuxiong He
VLM
62
57
0
16 Jun 2023
FP8 Formats for Deep Learning
FP8 Formats for Deep Learning
Paulius Micikevicius
Dusan Stosic
N. Burgess
Marius Cornea
Pradeep Dubey
...
Naveen Mellempudi
S. Oberman
M. Shoeybi
Michael Siu
Hao Wu
BDL
VLM
MQ
74
122
0
12 Sep 2022
ZeRO-Offload: Democratizing Billion-Scale Model Training
ZeRO-Offload: Democratizing Billion-Scale Model Training
Jie Ren
Samyam Rajbhandari
Reza Yazdani Aminabadi
Olatunji Ruwase
Shuangyang Yang
Minjia Zhang
Dong Li
Yuxiong He
MoE
177
416
0
18 Jan 2021
Megatron-LM: Training Multi-Billion Parameter Language Models Using
  Model Parallelism
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
M. Shoeybi
M. Patwary
Raul Puri
P. LeGresley
Jared Casper
Bryan Catanzaro
MoE
245
1,826
0
17 Sep 2019
1