ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.02726
  4. Cited By
For how many iterations should we run Markov chain Monte Carlo?
v1v2 (latest)

For how many iterations should we run Markov chain Monte Carlo?

5 November 2023
C. Margossian
Andrew Gelman
ArXiv (abs)PDFHTML

Papers citing "For how many iterations should we run Markov chain Monte Carlo?"

14 / 14 papers shown
Title
Adaptive Tuning for Metropolis Adjusted Langevin Trajectories
Adaptive Tuning for Metropolis Adjusted Langevin Trajectories
L. Riou-Durand
Pavel Sountsov
Jure Vogrinc
C. Margossian
Samuel Power
75
6
0
21 Oct 2022
On the use of a local $\hat{R}$ to improve MCMC convergence diagnostic
On the use of a local R^\hat{R}R^ to improve MCMC convergence diagnostic
Théo Moins
Julyan Arbel
A. Dutfoy
Stéphane Girard
59
13
0
13 May 2022
Focusing on Difficult Directions for Learning HMC Trajectory Lengths
Focusing on Difficult Directions for Learning HMC Trajectory Lengths
Pavel Sountsov
Matt Hoffman
68
10
0
22 Oct 2021
Pathfinder: Parallel quasi-Newton variational inference
Pathfinder: Parallel quasi-Newton variational inference
Lu Zhang
Bob Carpenter
A. Gelman
Aki Vehtari
118
41
0
09 Aug 2021
What Are Bayesian Neural Network Posteriors Really Like?
What Are Bayesian Neural Network Posteriors Really Like?
Pavel Izmailov
Sharad Vikram
Matthew D. Hoffman
A. Wilson
UQCVBDL
74
387
0
29 Apr 2021
Bayesian workflow for disease transmission modeling in Stan
Bayesian workflow for disease transmission modeling in Stan
Léo Grinsztajn
Elizaveta Semenova
C. Margossian
J. Riou
28
62
0
23 May 2020
tfp.mcmc: Modern Markov Chain Monte Carlo Tools Built for Modern
  Hardware
tfp.mcmc: Modern Markov Chain Monte Carlo Tools Built for Modern Hardware
Junpeng Lao
Christopher Suter
I. Langmore
C. Chimisov
A. Saxena
Pavel Sountsov
Dave Moore
Rif A. Saurous
Matthew D. Hoffman
Joshua V. Dillon
77
31
0
04 Feb 2020
GPU-based Parallel Computation Support for Stan
GPU-based Parallel Computation Support for Stan
Rok Cesnovar
S. Bronder
Davor Sluga
J. Demšar
Tadej Ciglarič
Sean Talts
Erik Štrumbelj
41
4
0
01 Jul 2019
Rank-normalization, folding, and localization: An improved $\widehat{R}$
  for assessing convergence of MCMC
Rank-normalization, folding, and localization: An improved R^\widehat{R}R for assessing convergence of MCMC
Aki Vehtari
Andrew Gelman
Daniel P. Simpson
Bob Carpenter
Paul-Christian Bürkner
57
940
0
19 Mar 2019
Revisiting the Gelman-Rubin Diagnostic
Revisiting the Gelman-Rubin Diagnostic
Dootika Vats
Christina Knudson
80
136
0
21 Dec 2018
Regularized Zero-Variance Control Variates
Regularized Zero-Variance Control Variates
Leah F. South
Chris J. Oates
Antonietta Mira
Christopher C. Drovandi
BDL
60
19
0
13 Nov 2018
Multivariate Output Analysis for Markov chain Monte Carlo
Multivariate Output Analysis for Markov chain Monte Carlo
Dootika Vats
James M. Flegal
Galin L. Jones
53
276
0
24 Dec 2015
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
183
4,313
0
18 Nov 2011
On the utility of graphics cards to perform massively parallel
  simulation of advanced Monte Carlo methods
On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods
Anthony Lee
C. Yau
M. Giles
Arnaud Doucet
Christopher C. Holmes
97
322
0
14 May 2009
1