ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.02695
  4. Cited By
Identifying Linearly-Mixed Causal Representations from Multi-Node
  Interventions

Identifying Linearly-Mixed Causal Representations from Multi-Node Interventions

5 November 2023
Simon Bing
Urmi Ninad
Jonas Wahl
Jakob Runge
    CML
ArXivPDFHTML

Papers citing "Identifying Linearly-Mixed Causal Representations from Multi-Node Interventions"

5 / 5 papers shown
Title
Sanity Checking Causal Representation Learning on a Simple Real-World System
Sanity Checking Causal Representation Learning on a Simple Real-World System
Juan L. Gamella
Simon Bing
Jakob Runge
CML
57
0
0
27 Feb 2025
Identifiability Guarantees for Causal Disentanglement from Purely
  Observational Data
Identifiability Guarantees for Causal Disentanglement from Purely Observational Data
Ryan Welch
Jiaqi Zhang
Caroline Uhler
CML
OOD
51
1
0
31 Oct 2024
Linear Causal Representation Learning from Unknown Multi-node
  Interventions
Linear Causal Representation Learning from Unknown Multi-node Interventions
Burak Varıcı
Emre Acartürk
Karthikeyan Shanmugam
A. Tajer
CML
35
1
0
09 Jun 2024
A Sparsity Principle for Partially Observable Causal Representation
  Learning
A Sparsity Principle for Partially Observable Causal Representation Learning
Danru Xu
Dingling Yao
Sébastien Lachapelle
Perouz Taslakian
Julius von Kügelgen
Francesco Locatello
Sara Magliacane
CML
46
13
0
13 Mar 2024
Invariance & Causal Representation Learning: Prospects and Limitations
Invariance & Causal Representation Learning: Prospects and Limitations
Simon Bing
Jonas Wahl
Urmi Ninad
Jakob Runge
CML
OOD
51
3
0
06 Dec 2023
1