Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2311.01873
Cited By
Efficient Black-Box Adversarial Attacks on Neural Text Detectors
3 November 2023
Vitalii Fishchuk
Daniel Braun
AAML
DeLMO
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Efficient Black-Box Adversarial Attacks on Neural Text Detectors"
9 / 9 papers shown
Title
Can AI-Generated Text be Reliably Detected?
Vinu Sankar Sadasivan
Aounon Kumar
S. Balasubramanian
Wenxiao Wang
Soheil Feizi
DeLMO
238
389
0
20 Jan 2025
TextDefense: Adversarial Text Detection based on Word Importance Entropy
Lujia Shen
Xuhong Zhang
S. Ji
Yuwen Pu
Chunpeng Ge
Xing Yang
Yanghe Feng
AAML
44
8
0
12 Feb 2023
Mutation-Based Adversarial Attacks on Neural Text Detectors
G. Liang
Jesus Guerrero
I. Alsmadi
DeLMO
61
9
0
11 Feb 2023
Untargeted, Targeted and Universal Adversarial Attacks and Defenses on Time Series
Pradeep Rathore
Arghya Basak
S. Nistala
Venkataramana Runkana
AAML
69
42
0
13 Jan 2021
Automatic Detection of Machine Generated Text: A Critical Survey
Ganesh Jawahar
Muhammad Abdul-Mageed
L. Lakshmanan
DeLMO
76
236
0
02 Nov 2020
Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Classification and Entailment
Di Jin
Zhijing Jin
Qiufeng Wang
Peter Szolovits
SILM
AAML
191
1,088
0
27 Jul 2019
Black-box Generation of Adversarial Text Sequences to Evade Deep Learning Classifiers
Ji Gao
Jack Lanchantin
M. Soffa
Yanjun Qi
AAML
140
725
0
13 Jan 2018
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
282
19,129
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
284
14,968
1
21 Dec 2013
1