ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.01394
  4. Cited By
Learning Realistic Traffic Agents in Closed-loop

Learning Realistic Traffic Agents in Closed-loop

2 November 2023
Chris Zhang
James Tu
Lunjun Zhang
Kelvin Wong
Simon Suo
R. Urtasun
ArXiv (abs)PDFHTML

Papers citing "Learning Realistic Traffic Agents in Closed-loop"

34 / 34 papers shown
Title
Guided Conditional Diffusion for Controllable Traffic Simulation
Guided Conditional Diffusion for Controllable Traffic Simulation
Ziyuan Zhong
Davis Rempe
Danfei Xu
Yuxiao Chen
Sushant Veer
Tong Che
Baishakhi Ray
Marco Pavone
68
155
0
31 Oct 2022
TrafficGen: Learning to Generate Diverse and Realistic Traffic Scenarios
TrafficGen: Learning to Generate Diverse and Realistic Traffic Scenarios
Lan Feng
Quanyi Li
Zhenghao Peng
Shuhan Tan
Bolei Zhou
80
88
0
12 Oct 2022
BITS: Bi-level Imitation for Traffic Simulation
BITS: Bi-level Imitation for Traffic Simulation
Danfei Xu
Yuxiao Chen
Boris Ivanovic
Marco Pavone
89
84
0
26 Aug 2022
Jump-Start Reinforcement Learning
Jump-Start Reinforcement Learning
Ikechukwu Uchendu
Ted Xiao
Yao Lu
Banghua Zhu
Mengyuan Yan
...
Chuyuan Fu
Cong Ma
Jiantao Jiao
Sergey Levine
Karol Hausman
OffRLOnRL
81
113
0
05 Apr 2022
TrajGen: Generating Realistic and Diverse Trajectories with Reactive and
  Feasible Agent Behaviors for Autonomous Driving
TrajGen: Generating Realistic and Diverse Trajectories with Reactive and Feasible Agent Behaviors for Autonomous Driving
Qichao Zhang
Yinfeng Gao
Yikang Zhang
Youtian Guo
Dawei Ding
Yunpeng Wang
Peng Sun
Dongbin Zhao
81
35
0
31 Mar 2022
Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
  Prior
Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic Prior
Davis Rempe
Jonah Philion
Leonidas Guibas
Sanja Fidler
Or Litany
88
135
0
09 Dec 2021
AW-Opt: Learning Robotic Skills with Imitation and Reinforcement at
  Scale
AW-Opt: Learning Robotic Skills with Imitation and Reinforcement at Scale
Yao Lu
Karol Hausman
Yevgen Chebotar
Mengyuan Yan
Eric Jang
...
Ted Xiao
A. Irpan
Mohi Khansari
Dmitry Kalashnikov
Sergey Levine
OffRL
179
60
0
09 Nov 2021
PredictionNet: Real-Time Joint Probabilistic Traffic Prediction for
  Planning, Control, and Simulation
PredictionNet: Real-Time Joint Probabilistic Traffic Prediction for Planning, Control, and Simulation
A. Kamenev
Lirui Wang
Ollin Boer Bohan
Ishwar Kulkarni
Bilal Kartal
Artem Molchanov
Stan Birchfield
David Nistér
Nikolai Smolyanskiy
95
40
0
23 Sep 2021
A Minimalist Approach to Offline Reinforcement Learning
A Minimalist Approach to Offline Reinforcement Learning
Scott Fujimoto
S. Gu
OffRL
130
827
0
12 Jun 2021
SimNet: Learning Reactive Self-driving Simulations from Real-world
  Observations
SimNet: Learning Reactive Self-driving Simulations from Real-world Observations
Luca Bergamini
Yawei Ye
Oliver Scheel
Long Chen
Chih Hu
Luca Del Pero
B. Osinski
Hugo Grimmett
Peter Ondruska
59
103
0
26 May 2021
Imagining The Road Ahead: Multi-Agent Trajectory Prediction via
  Differentiable Simulation
Imagining The Road Ahead: Multi-Agent Trajectory Prediction via Differentiable Simulation
Adam Scibior
Vasileios Lioutas
Daniele Reda
Peyman Bateni
Frank Wood
VGen
76
48
0
22 Apr 2021
Multi-Modal Fusion Transformer for End-to-End Autonomous Driving
Multi-Modal Fusion Transformer for End-to-End Autonomous Driving
Aditya Prakash
Kashyap Chitta
Andreas Geiger
ViT
108
531
0
19 Apr 2021
TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors
TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors
Simon Suo
S. Regalado
Sergio Casas
R. Urtasun
183
230
0
17 Jan 2021
AdvSim: Generating Safety-Critical Scenarios for Self-Driving Vehicles
AdvSim: Generating Safety-Critical Scenarios for Self-Driving Vehicles
Jingkang Wang
Ava Pun
James Tu
S. Manivasagam
Abbas Sadat
Sergio Casas
Mengye Ren
R. Urtasun
79
168
0
16 Jan 2021
Waymo's Safety Methodologies and Safety Readiness Determinations
Waymo's Safety Methodologies and Safety Readiness Determinations
N. Webb
Dan Smith
Christopher Ludwick
Trent Victor
Q. Hommes
Francesca Favaro
George Ivanov
Tom Daniel
42
65
0
30 Oct 2020
Learning Lane Graph Representations for Motion Forecasting
Learning Lane Graph Representations for Motion Forecasting
Ming Liang
Binh Yang
Rui Hu
Yun Chen
Renjie Liao
Song Feng
R. Urtasun
79
573
0
27 Jul 2020
Implicit Latent Variable Model for Scene-Consistent Motion Forecasting
Implicit Latent Variable Model for Scene-Consistent Motion Forecasting
Sergio Casas
Cole Gulino
Simon Suo
Katie Z Luo
Renjie Liao
R. Urtasun
209
158
0
23 Jul 2020
AWAC: Accelerating Online Reinforcement Learning with Offline Datasets
AWAC: Accelerating Online Reinforcement Learning with Offline Datasets
Ashvin Nair
Abhishek Gupta
Murtaza Dalal
Sergey Levine
OffRLOnRL
107
612
0
16 Jun 2020
Conservative Q-Learning for Offline Reinforcement Learning
Conservative Q-Learning for Offline Reinforcement Learning
Aviral Kumar
Aurick Zhou
George Tucker
Sergey Levine
OffRLOnRL
140
1,824
0
08 Jun 2020
End-to-End Model-Free Reinforcement Learning for Urban Driving using
  Implicit Affordances
End-to-End Model-Free Reinforcement Learning for Urban Driving using Implicit Affordances
Marin Toromanoff
É. Wirbel
Fabien Moutarde
OffRL
134
208
0
25 Nov 2019
A Divergence Minimization Perspective on Imitation Learning Methods
A Divergence Minimization Perspective on Imitation Learning Methods
Seyed Kamyar Seyed Ghasemipour
R. Zemel
S. Gu
80
250
0
06 Nov 2019
Model-Predictive Policy Learning with Uncertainty Regularization for
  Driving in Dense Traffic
Model-Predictive Policy Learning with Uncertainty Regularization for Driving in Dense Traffic
Mikael Henaff
A. Canziani
Yann LeCun
OOD
88
122
0
08 Jan 2019
Soft Actor-Critic Algorithms and Applications
Soft Actor-Critic Algorithms and Applications
Tuomas Haarnoja
Aurick Zhou
Kristian Hartikainen
George Tucker
Sehoon Ha
...
Vikash Kumar
Henry Zhu
Abhishek Gupta
Pieter Abbeel
Sergey Levine
138
2,445
0
13 Dec 2018
CIRL: Controllable Imitative Reinforcement Learning for Vision-based
  Self-driving
CIRL: Controllable Imitative Reinforcement Learning for Vision-based Self-driving
Xiaodan Liang
Tairui Wang
Luona Yang
Eric Xing
58
269
0
10 Jul 2018
Learning Robust Rewards with Adversarial Inverse Reinforcement Learning
Learning Robust Rewards with Adversarial Inverse Reinforcement Learning
Justin Fu
Katie Z Luo
Sergey Levine
129
757
0
30 Oct 2017
End-to-end Driving via Conditional Imitation Learning
End-to-end Driving via Conditional Imitation Learning
Felipe Codevilla
Matthias Muller
Antonio M. López
V. Koltun
Alexey Dosovitskiy
131
1,066
0
06 Oct 2017
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
523
19,237
0
20 Jul 2017
Virtual to Real Reinforcement Learning for Autonomous Driving
Virtual to Real Reinforcement Learning for Autonomous Driving
Xinlei Pan
Yurong You
Ziyan Wang
Cewu Lu
OffRL
69
336
0
13 Apr 2017
Safe, Multi-Agent, Reinforcement Learning for Autonomous Driving
Safe, Multi-Agent, Reinforcement Learning for Autonomous Driving
Shai Shalev-Shwartz
Shaked Shammah
Amnon Shashua
108
840
0
11 Oct 2016
Generative Adversarial Imitation Learning
Generative Adversarial Imitation Learning
Jonathan Ho
Stefano Ermon
GAN
156
3,119
0
10 Jun 2016
End to End Learning for Self-Driving Cars
End to End Learning for Self-Driving Cars
Mariusz Bojarski
D. Testa
Daniel Dworakowski
Bernhard Firner
B. Flepp
...
Urs Muller
Jiakai Zhang
Xin Zhang
Jake Zhao
Karol Zieba
SSL
100
4,175
0
25 Apr 2016
Continuous control with deep reinforcement learning
Continuous control with deep reinforcement learning
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
N. Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
323
13,272
0
09 Sep 2015
High-Dimensional Continuous Control Using Generalized Advantage
  Estimation
High-Dimensional Continuous Control Using Generalized Advantage Estimation
John Schulman
Philipp Moritz
Sergey Levine
Michael I. Jordan
Pieter Abbeel
OffRL
104
3,434
0
08 Jun 2015
A Reduction of Imitation Learning and Structured Prediction to No-Regret
  Online Learning
A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning
Stéphane Ross
Geoffrey J. Gordon
J. Andrew Bagnell
OffRL
231
3,232
0
02 Nov 2010
1