ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.00967
13
26

Vision-Language Interpreter for Robot Task Planning

2 November 2023
Keisuke Shirai
C. C. Beltran-Hernandez
Masashi Hamaya
Atsushi Hashimoto
Shohei Tanaka
Kento Kawaharazuka
Kazutoshi Tanaka
Yoshitaka Ushiku
Shinsuke Mori
    LM&Ro
ArXivPDFHTML
Abstract

Large language models (LLMs) are accelerating the development of language-guided robot planners. Meanwhile, symbolic planners offer the advantage of interpretability. This paper proposes a new task that bridges these two trends, namely, multimodal planning problem specification. The aim is to generate a problem description (PD), a machine-readable file used by the planners to find a plan. By generating PDs from language instruction and scene observation, we can drive symbolic planners in a language-guided framework. We propose a Vision-Language Interpreter (ViLaIn), a new framework that generates PDs using state-of-the-art LLM and vision-language models. ViLaIn can refine generated PDs via error message feedback from the symbolic planner. Our aim is to answer the question: How accurately can ViLaIn and the symbolic planner generate valid robot plans? To evaluate ViLaIn, we introduce a novel dataset called the problem description generation (ProDG) dataset. The framework is evaluated with four new evaluation metrics. Experimental results show that ViLaIn can generate syntactically correct problems with more than 99\% accuracy and valid plans with more than 58\% accuracy. Our code and dataset are available at https://github.com/omron-sinicx/ViLaIn.

View on arXiv
Comments on this paper