ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.19035
  4. Cited By
Does Invariant Graph Learning via Environment Augmentation Learn
  Invariance?

Does Invariant Graph Learning via Environment Augmentation Learn Invariance?

29 October 2023
Yongqiang Chen
Yatao Bian
Kaiwen Zhou
Binghui Xie
Bo Han
James Cheng
    OOD
ArXivPDFHTML

Papers citing "Does Invariant Graph Learning via Environment Augmentation Learn Invariance?"

39 / 39 papers shown
Title
Learning Repetition-Invariant Representations for Polymer Informatics
Learning Repetition-Invariant Representations for Polymer Informatics
Yihan Zhu
Gang Liu
Eric Inae
Tengfei Luo
Meng Jiang
17
0
0
15 May 2025
Soft causal learning for generalized molecule property prediction: An environment perspective
Soft causal learning for generalized molecule property prediction: An environment perspective
Limin Li
Kuo Yang
Wenjie Du
Pengkun Wang
Zhengyang Zhou
Yang Wang
OOD
AI4CE
56
0
0
07 May 2025
Out-of-Distribution Generalization on Graphs via Progressive Inference
Yiming Xu
Bin Shi
Zhen Peng
Huixiang Liu
Bo Dong
Chen Chen
OOD
AI4CE
79
0
0
04 Mar 2025
Generative Risk Minimization for Out-of-Distribution Generalization on Graphs
Generative Risk Minimization for Out-of-Distribution Generalization on Graphs
Song Wang
Zhen Tan
Yaochen Zhu
Chuxu Zhang
Wenlin Yao
OOD
101
0
0
11 Feb 2025
BrainOOD: Out-of-distribution Generalizable Brain Network Analysis
BrainOOD: Out-of-distribution Generalizable Brain Network Analysis
Jiaxing Xu
Yongqiang Chen
Xia Dong
Mengcheng Lan
Tiancheng Huang
Qingtian Bian
James Cheng
Yiping Ke
OOD
68
1
0
02 Feb 2025
Enhancing Distribution and Label Consistency for Graph Out-of-Distribution Generalization
Enhancing Distribution and Label Consistency for Graph Out-of-Distribution Generalization
Song Wang
Xiaodong Yang
Rashidul Islam
Huiyuan Chen
Minghua Xu
Jundong Li
Yiwei Cai
OODD
62
2
0
07 Jan 2025
Scale Invariance of Graph Neural Networks
Scale Invariance of Graph Neural Networks
Qin Jiang
Chengjia Wang
Michael Lones
Wei Pang
GNN
115
0
0
28 Nov 2024
Subgraph Aggregation for Out-of-Distribution Generalization on Graphs
Subgraph Aggregation for Out-of-Distribution Generalization on Graphs
Bowen Liu
Haoyang Li
Shuning Wang
Shuo Nie
Shanghang Zhang
OODD
CML
74
0
0
29 Oct 2024
A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation
A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation
Kexin Zhang
Shuhan Liu
Song Wang
Weili Shi
Chen Chen
Pan Li
Sheng Li
Jundong Li
Kaize Ding
OOD
53
2
0
25 Oct 2024
Mitigating Graph Covariate Shift via Score-based Out-of-distribution
  Augmentation
Mitigating Graph Covariate Shift via Score-based Out-of-distribution Augmentation
Bohan Wang
Yurui Chang
Lu Lin
OODD
OOD
40
0
0
23 Oct 2024
Leveraging Invariant Principle for Heterophilic Graph Structure Distribution Shifts
Leveraging Invariant Principle for Heterophilic Graph Structure Distribution Shifts
Jinluan Yang
Zhengyu Chen
Teng Xiao
Wenqiao Zhang
Yong Lin
Kun Kuang
53
1
0
18 Aug 2024
Invariant Graph Learning Meets Information Bottleneck for Out-of-Distribution Generalization
Invariant Graph Learning Meets Information Bottleneck for Out-of-Distribution Generalization
Wenyu Mao
Jiancan Wu
Haoyang Liu
Yongduo Sui
Xiang Wang
OOD
39
2
0
03 Aug 2024
Unifying Invariant and Variant Features for Graph Out-of-Distribution
  via Probability of Necessity and Sufficiency
Unifying Invariant and Variant Features for Graph Out-of-Distribution via Probability of Necessity and Sufficiency
Xuexin Chen
Ruichu Cai
Kaitao Zheng
Zhifan Jiang
Zhengting Huang
Zhifeng Hao
Zijian Li
54
0
0
21 Jul 2024
Improving Graph Out-of-distribution Generalization on Real-world Data
Improving Graph Out-of-distribution Generalization on Real-world Data
Can Xu
Yao Cheng
Jianxiang Yu
Haosen Wang
Jingsong Lv
Xiang Li
OOD
36
0
0
14 Jul 2024
Empowering Graph Invariance Learning with Deep Spurious Infomax
Empowering Graph Invariance Learning with Deep Spurious Infomax
Tianjun Yao
Yongqiang Chen
Zhenhao Chen
Kai Hu
Zhiqiang Shen
Kun Zhang
OOD
45
6
0
13 Jul 2024
How Interpretable Are Interpretable Graph Neural Networks?
How Interpretable Are Interpretable Graph Neural Networks?
Yongqiang Chen
Yatao Bian
Bo Han
James Cheng
49
4
0
12 Jun 2024
Improving out-of-distribution generalization in graphs via hierarchical
  semantic environments
Improving out-of-distribution generalization in graphs via hierarchical semantic environments
Yinhua Piao
Sangseon Lee
Yijingxiu Lu
Sun Kim
OOD
39
2
0
04 Mar 2024
Pairwise Alignment Improves Graph Domain Adaptation
Pairwise Alignment Improves Graph Domain Adaptation
Shikun Liu
Deyu Zou
Han Zhao
Pan Li
OOD
40
7
0
02 Mar 2024
Unifying Invariance and Spuriousity for Graph Out-of-Distribution via
  Probability of Necessity and Sufficiency
Unifying Invariance and Spuriousity for Graph Out-of-Distribution via Probability of Necessity and Sufficiency
Xuexin Chen
Ruichu Cai
Kaitao Zheng
Zhifan Jiang
Zhengting Huang
Zhifeng Hao
Zijian Li
24
2
0
14 Feb 2024
Enhancing Evolving Domain Generalization through Dynamic Latent
  Representations
Enhancing Evolving Domain Generalization through Dynamic Latent Representations
Binghui Xie
Yongqiang Chen
Jiaqi Wang
Kaiwen Zhou
Bo Han
Wei Meng
James Cheng
41
5
0
16 Jan 2024
When Graph Neural Network Meets Causality: Opportunities, Methodologies
  and An Outlook
When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook
Wenzhao Jiang
Hao Liu
Hui Xiong
CML
AI4CE
49
2
0
19 Dec 2023
Neural Atoms: Propagating Long-range Interaction in Molecular Graphs
  through Efficient Communication Channel
Neural Atoms: Propagating Long-range Interaction in Molecular Graphs through Efficient Communication Channel
Xuan Li
Zhanke Zhou
Jiangchao Yao
Yu Rong
Lu Zhang
Bo Han
42
3
0
02 Nov 2023
Causality and Independence Enhancement for Biased Node Classification
Causality and Independence Enhancement for Biased Node Classification
Guoxin Chen
Yongqing Wang
Fangda Guo
Qinglang Guo
Jiangli Shao
Huawei Shen
Xueqi Cheng
CML
AI4CE
OOD
40
14
0
14 Oct 2023
Towards out-of-distribution generalizable predictions of chemical
  kinetics properties
Towards out-of-distribution generalizable predictions of chemical kinetics properties
Zihao Wang
Yongqiang Chen
Yang Duan
Weijiang Li
Bo Han
James Cheng
Hanghang Tong
OOD
28
6
0
04 Oct 2023
Discovering environments with XRM
Discovering environments with XRM
Mohammad Pezeshki
Diane Bouchacourt
Mark Ibrahim
Jimuyang Zhang
Pascal Vincent
David Lopez-Paz
46
18
0
28 Sep 2023
Joint Learning of Label and Environment Causal Independence for Graph
  Out-of-Distribution Generalization
Joint Learning of Label and Environment Causal Independence for Graph Out-of-Distribution Generalization
Shurui Gui
Meng Liu
Xiner Li
Youzhi Luo
Shuiwang Ji
CML
OOD
25
24
0
01 Jun 2023
Mind the Label Shift of Augmentation-based Graph OOD Generalization
Mind the Label Shift of Augmentation-based Graph OOD Generalization
Junchi Yu
Jian Liang
Ran He
34
27
0
27 Mar 2023
Towards Better Out-of-Distribution Generalization of Neural Algorithmic
  Reasoning Tasks
Towards Better Out-of-Distribution Generalization of Neural Algorithmic Reasoning Tasks
Sadegh Mahdavi
Kevin Swersky
Thomas Kipf
Milad Hashemi
Christos Thrampoulidis
Renjie Liao
LRM
OOD
NAI
49
25
0
01 Nov 2022
Empowering Graph Representation Learning with Test-Time Graph
  Transformation
Empowering Graph Representation Learning with Test-Time Graph Transformation
Wei Jin
Tong Zhao
Jiayu Ding
Yozen Liu
Jiliang Tang
Neil Shah
OOD
86
61
0
07 Oct 2022
Towards Better Generalization with Flexible Representation of
  Multi-Module Graph Neural Networks
Towards Better Generalization with Flexible Representation of Multi-Module Graph Neural Networks
Hyungeun Lee
Kijung Yoon
AI4CE
31
2
0
14 Sep 2022
OOD Link Prediction Generalization Capabilities of Message-Passing GNNs
  in Larger Test Graphs
OOD Link Prediction Generalization Capabilities of Message-Passing GNNs in Larger Test Graphs
Yangze Zhou
Gitta Kutyniok
Bruno Ribeiro
OODD
AI4CE
81
37
0
30 May 2022
Discovering Invariant Rationales for Graph Neural Networks
Discovering Invariant Rationales for Graph Neural Networks
Yingmin Wu
Xiang Wang
An Zhang
Xiangnan He
Tat-Seng Chua
OOD
AI4CE
99
224
0
30 Jan 2022
DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for
  AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise
  Annotations
DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise Annotations
Yuanfeng Ji
Lu Zhang
Jiaxiang Wu
Bing Wu
Long-Kai Huang
...
Ping Luo
Shuigeng Zhou
Junzhou Huang
Peilin Zhao
Yatao Bian
OOD
69
73
0
24 Jan 2022
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
Ana Lucic
Maartje ter Hoeve
Gabriele Tolomei
Maarten de Rijke
Fabrizio Silvestri
118
142
0
05 Feb 2021
Does Invariant Risk Minimization Capture Invariance?
Does Invariant Risk Minimization Capture Invariance?
Pritish Kamath
Akilesh Tangella
Danica J. Sutherland
Nathan Srebro
OOD
198
125
0
04 Jan 2021
Explainability in Graph Neural Networks: A Taxonomic Survey
Explainability in Graph Neural Networks: A Taxonomic Survey
Hao Yuan
Haiyang Yu
Shurui Gui
Shuiwang Ji
167
593
0
31 Dec 2020
From Local Structures to Size Generalization in Graph Neural Networks
From Local Structures to Size Generalization in Graph Neural Networks
Gilad Yehudai
Ethan Fetaya
E. Meirom
Gal Chechik
Haggai Maron
GNN
AI4CE
172
123
0
17 Oct 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
901
0
02 Mar 2020
Representation Learning on Graphs with Jumping Knowledge Networks
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
276
1,944
0
09 Jun 2018
1