ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.18859
  4. Cited By
SiDA-MoE: Sparsity-Inspired Data-Aware Serving for Efficient and
  Scalable Large Mixture-of-Experts Models
v1v2 (latest)

SiDA-MoE: Sparsity-Inspired Data-Aware Serving for Efficient and Scalable Large Mixture-of-Experts Models

29 October 2023
Zhixu Du
Shiyu Li
Yuhao Wu
Xiangyu Jiang
Jingwei Sun
Qilin Zheng
Yongkai Wu
Ang Li
Hai Helen Li
Yiran Chen
    MoE
ArXiv (abs)PDFHTMLGithub (17★)

Papers citing "SiDA-MoE: Sparsity-Inspired Data-Aware Serving for Efficient and Scalable Large Mixture-of-Experts Models"

3 / 3 papers shown
Title
DAOP: Data-Aware Offloading and Predictive Pre-Calculation for Efficient MoE Inference
DAOP: Data-Aware Offloading and Predictive Pre-Calculation for Efficient MoE Inference
Yujie Zhang
Shivam Aggarwal
T. Mitra
MoE
167
1
0
16 Dec 2024
Mixture of Cache-Conditional Experts for Efficient Mobile Device Inference
Andrii Skliar
T. V. Rozendaal
Romain Lepert
Todor Boinovski
M. V. Baalen
Markus Nagel
Paul N. Whatmough
B. Bejnordi
MoE
174
2
0
27 Nov 2024
Shortcut-connected Expert Parallelism for Accelerating Mixture-of-Experts
Shortcut-connected Expert Parallelism for Accelerating Mixture-of-Experts
Weilin Cai
Juyong Jiang
Le Qin
Junwei Cui
Sunghun Kim
Jiayi Huang
185
10
0
07 Apr 2024
1